Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nutr ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814365

ABSTRACT

IMPORTANCE: Epidemiological evidences regarding the association between whole grain intake and the risk of new-onset hypertension are still controversial. OBJECTIVE: We aimed to investigate the relationship between whole grain intake and new-onset hypertension and examine possible effect modifiers in the general population. METHODS: A total of 10,973 participants without hypertension from the China Health and Nutrition Survey were enrolled, with follow-up beginning in 1997 and ending in 2015. Whole grain intake was assessed by 3 consecutive 24-h dietary recalls combined with a household food inventory. Multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards regression model after adjusting for potential risk factors. RESULTS: During a median follow-up of 7.0 years, 3,733 participants developed new-onset hypertension. The adjusted HRs (95% CIs) were as follows: for quartile 2 (HR: 0.52; 95% CI: 0.47-0.57), quartile 3 (HR: 0.46; 95% CI: 0.42-0.51), and quartile 4 (HR: 0.35; 95% CI: 0.31-0.38), compared with quartile 1. Different types of whole grain types, including wheat (adjusted HR, 0.35; 95% CI, 0.32-0.39), maize (adjusted HR, 0.50; 95% CI, 0.42-0.59), and millet (adjusted HR, 0.38; 95% CI, 0.30-0.48), showed significant associations with a reduced risk of hypertension. The association between whole grain intake and new-onset hypertension was stronger in individuals with older age (P for interaction < 0.001) and higher BMI (P for interaction < 0.001). CONCLUSION: Higher consumption of whole grains was significantly associated with a lower risk of new-onset hypertension. This study provides further evidence supporting the importance of increasing whole grain intake for hypertension prevention among Chinese adults.

2.
Ecotoxicol Environ Saf ; 274: 116176, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38479309

ABSTRACT

Ambient air pollution is a major global health concern. Yet, no study has thoroughly assessed its link to respiratory mortality. Our research evaluated the combined and individual effects of air pollutants on respiratory mortality risks based on the UK Biobank. A total of 366,478 participants were studied. A Cox proportional hazards model was used to estimate the respiratory mortality risk from combined long-term exposure to five pollutants, summarized as a weighted air pollution score. During a median of 13.6 years of follow-up, 6113 deaths due to respiratory diseases were recorded. The hazard ratios (HRs) and 95% confidence intervals (95% CIs) of respiratory diseases were 2.64 (2.05-3.39), 1.62 (1.23-2.12), 2.06 (1.73-2.45), 1.20 (1.16-1.25), and 1.07 (1.05-1.08) per 10 µg/m3 increase in PM2.5, PM2.5-10, PM10, NO2, and NOx, respectively. The air pollution score showed a dose-response association with an elevated respiratory mortality risk. The highest versus lowest quartile air pollution score was linked to a 44% increase in respiratory mortality risk (HR 1.44, 95% CI: 1.33-1.57), with consistent findings in subgroup and sensitivity analyses. Long-term individual and joint air-pollutant exposure showed a dose-response association with an increased respiratory mortality risk, highlighting the importance of a comprehensive air-pollutant assessment to protect public health.


Subject(s)
Air Pollutants , Air Pollution , Respiratory Tract Diseases , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Prospective Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Respiratory Tract Diseases/epidemiology , Nitrogen Dioxide
3.
J Nutr ; 154(4): 1262-1270, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367806

ABSTRACT

BACKGROUND: The relationship between whole grain intake and chronic kidney disease (CKD) remains uncertain. OBJECTIVE: This study aimed to evaluate the association between whole grain intake and risk of CKD in Chinese adults. METHODS: The present cross-sectional study used data from the China Health and Nutrition Survey conducted in 2009. Whole grain intake was measured using 3 consecutive 24-h dietary recalls and a household food inventory. A multivariable logistic regression model was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for risk of CKD. In addition, a restricted cubic spline was used to investigate the dose‒response relationship between whole grain and risk of CKD. RESULTS: A total of 6747 participants were included, 728 of whom had CKD. Compared with those in the lowest whole grain intake group, those in the higher grain intake group had an inverse association with risk of CKD (Q2: adjusted OR 0.70, 95% CI: 0.54, 0.89; Q3: adjusted OR 0.54, 95% CI: 0.42, 0.69; and Q4: adjusted OR 0.29, 95% CI: 0.21, 0.41). The association between whole grain intake and CKD seems to be stronger for individuals who were male (P for interaction = 0.008) or smokers (P for interaction = 0.013). In addition, the restricted cubic spline suggested an obvious L-shaped correlation. CONCLUSIONS: Increased whole grain intake was associated with a decreased risk of CKD in Chinese adults.


Subject(s)
Renal Insufficiency, Chronic , Whole Grains , Adult , Humans , Male , Female , Cross-Sectional Studies , Renal Insufficiency, Chronic/epidemiology , Diet , Nutrition Surveys
4.
Ecotoxicol Environ Saf ; 265: 115492, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37742574

ABSTRACT

Both air pollution and physical inactivity contribute to the increased risk of incident chronic kidney disease (CKD). However, the detrimental effects of air pollution exposure could be augmented by an elevated intake of air pollutants during exercise. In the present study, we analyzed 367,978 participants who were CKD-free at baseline (2006-2010) based on the UK Biobank. Air pollutants included fine particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOX). Physical activity (PA) was obtained by the self-reported questionnaire. Using Cox proportional hazards models, hazard ratios (HRs) for incident CKD related to air pollution, PA, and incident CKD were evaluated. During a median of 12.4 years of follow-up, 14,191 incident CKD events were documented. High PM2.5, PM10, NO2, and NOX increased CKD risks by 11 %, 15 %, 14 %, and 12 %, respectively, while moderate and high PA reduced CKD risks by 18 % and 22 %, respectively. Participants with high PA and low air pollution exposure had 29 %, 31 %, 30 %, and 30 % risks of incident CKD than those with low PA and high air pollution exposure for the four air pollutants, with multivariable-adjusted HRs of 0.71 (95 % confidence intervals [CI]: 0.65-0.76) for PM2.5, 0.69 (95 % CI: 0.64-0.75) for PM10, 0.70 (95 % CI: 0.64-0.75) for NO2, and 0.70 (95 % CI: 0.64-0.75) for NOX. No clear interactions were observed between each air pollutant exposure and PA (all P for interaction > 0.05). The findings that reducing air pollution exposure and increasing PA were both independently correlated with a diminished risk of incident CKD suggest that PA could be targeted to prevent CKD generally regardless of air pollution levels. Further research is needed in areas polluted moderately and severely to examine our findings.


Subject(s)
Air Pollutants , Air Pollution , Renal Insufficiency, Chronic , Humans , Nitrogen Dioxide/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/analysis , Particulate Matter/toxicity , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/etiology , Exercise
SELECTION OF CITATIONS
SEARCH DETAIL
...