Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Shock ; 58(1): 68-77, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35670456

ABSTRACT

ABSTRACT: With-No lysine Kinases (WNKs) have been newly implicated in alveolar fluid clearance (AFC). Epithelial sodium channels (ENaCs) serve a vital role in AFC. The potential protective effect of WNK4 in acute respiratory distress syndrome (ARDS), mediated by ENaC-associated AFC was investigated in the study. A model of lipopolysaccharide (LPS)-induced ARDS was established in C57BL/6 mice. WNK4, Sterile 20-related proline-alanine-rich kinase (SPAK), small interfering RNA (siRNA)-WNK4 or siRNA-SPAK were transfected into mouse lung or primary alveolar epithelial type II (ATII) cells. AFC, bronchoalveolar lavage fluid and lung histomorphology were determined. The expression of ENaC was determined to investigate the regulation of AFC by WNK4-SPAK signaling pathway. Activation of WNK4-SPAK signaling improved lung injury and survival rate, with enhanced AFC and reduced pulmonary edema via the upregulation of ENaC in ARDS. In primary rat ATII cells, gene-silencing by siRNA transfection reduced ENaC expression and the level of WNK4-associated SPAK phosphorylation. Immunoprecipitation revealed that the level of neural precursor cell-expressed developmentally downregulated gene 4 (Nedd4-2) binding to ENaC was decreased as a result of WNK4-SPAK signaling. The present study demonstrated that the WNK4/SPAK pathway improved AFC during LPS-induced ARDS, which is mainly dependent on the upregulation of ENaC with Nedd4-2-mediated ubiquitination.


Subject(s)
Epithelial Sodium Channels , Protein Serine-Threonine Kinases , Respiratory Distress Syndrome , Animals , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Small Interfering , Rats , Respiratory Distress Syndrome/chemically induced , Signal Transduction , Up-Regulation
2.
Mol Med Rep ; 24(4)2021 Oct.
Article in English | MEDLINE | ID: mdl-34396442

ABSTRACT

Chronic alcohol abuse increases the risk of mortality and poor outcomes in patients with acute respiratory distress syndrome. However, the underlying mechanisms remain to be elucidated. The present study aimed to investigate the effects of chronic alcohol consumption on lung injury and clarify the signaling pathways involved in the inhibition of alveolar fluid clearance (AFC). In order to produce rodent models with chronic alcohol consumption, wild­type C57BL/6 mice were treated with alcohol. A2a adenosine receptor (AR) small interfering (si)RNA or A2bAR siRNA were transfected into the lung tissue of mice and primary rat alveolar type II (ATII) cells. The rate of AFC in lung tissue was measured during exposure to lipopolysaccharide (LPS). Epithelial sodium channel (ENaC) expression was determined to investigate the mechanisms underlying alcohol­induced regulation of AFC. In the present study, exposure to alcohol reduced AFC, exacerbated pulmonary edema and worsened LPS­induced lung injury. Alcohol caused a decrease in cyclic adenosine monophosphate (cAMP) levels and inhibited α­ENaC, ß­ENaC and γ­ENaC expression levels in the lung tissue of mice and ATII cells. Furthermore, alcohol decreased α­ENaC, ß­ENaC and γ­ENaC expression levels via the A2aAR or A2bAR­cAMP signaling pathways in vitro. In conclusion, the results of the present study demonstrated that chronic alcohol consumption worsened lung injury by aggravating pulmonary edema and impairing AFC. An alcohol­induced decrease of α­ENaC, ß­ENaC and γ­ENaC expression levels by the A2AR­mediated cAMP pathway may be responsible for the exacerbated effects of chronic alcohol consumption in lung injury.


Subject(s)
Acute Lung Injury/metabolism , Alveolar Epithelial Cells/metabolism , Epithelial Sodium Channels/drug effects , Epithelial Sodium Channels/metabolism , Ethanol/pharmacology , Receptors, Adenosine A2/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Alveolar Epithelial Cells/pathology , Animals , Cyclic AMP/metabolism , Cytokines , Lipopolysaccharides/adverse effects , Lung/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , Lung Injury/pathology , Mice , Mice, Inbred C57BL , Pulmonary Alveoli/metabolism , Pulmonary Edema/chemically induced , Pulmonary Edema/metabolism , Pulmonary Edema/pathology , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Rats , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/metabolism , Signal Transduction
3.
Cell Mol Biol Lett ; 24: 35, 2019.
Article in English | MEDLINE | ID: mdl-31160894

ABSTRACT

BACKGROUND: Pulmonary edema is one of the pathological characteristics of acute respiratory distress syndrome (ARDS). The epithelial sodium channel (ENaC) is thought to be the rate-limiting factor for alveolar fluid clearance (AFC) during pulmonary edema. The peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone was shown to stimulate ENaC-mediated salt absorption in the kidney. However, its role in the lung remains unclear. Here, we investigated the role of the PPARγ agonist in the lung to find out whether it can regulate AFC during acute lung injury (ALI). We also attempted to elucidate the mechanism for this. METHODS: Our ALI model was established through intratracheal instillation of lipopolysaccharide (LPS) in C57BL/6 J mice. The mice were randomly divided into 4 groups of 10. The control group underwent a sham operation and received an equal quantity of saline. The three experimental groups underwent intratracheal instillation of 5 mg/kg LPS, followed by intraperitoneal injection of 4 mg/kg rosiglitazone, 4 mg/kg rosiglitazone plus 1 mg/kg GW9662, or only equal quantity of saline. The histological morphology of the lung, the levels of TNF-α and IL-1ß in the bronchoalveolar lavage fluid (BALF), the level of AFC, and the expressions of αENaC and serum and glucocorticoid-induced kinase-1 (SGK1) were determined. Type 2 alveolar (AT II) cells were incubated with rosiglitazone (15 µM) with or without GW9662 (10 µM). The expressions of αENaC and SGK1 were determined 24 h later. RESULTS: A mouse model of ALI was successfully established. Rosiglitazone significantly ameliorated the lung injury, decreasing the TNF-α and IL-1ß levels in the BALF, enhancing AFC, and promoting the expressions of αENaC and SGK1 in ALI mice, which were abolished by the specific PPARγ blocker GW9662. In vitro, rosiglitazone increased the expressions of αENaC and SGK1. This increase was prevented by GW9662. CONCLUSIONS: Rosiglitazone ameliorated the lung injury and promoted ENaC-mediated AFC via a PPARγ/SGK1-dependent signaling pathway, alleviating pulmonary edema in a mouse model of ALI.


Subject(s)
Acute Lung Injury/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Epithelial Sodium Channels/metabolism , PPAR gamma/metabolism , Protein Serine-Threonine Kinases/metabolism , Rosiglitazone/pharmacology , Signal Transduction , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Animals , Disease Models, Animal , Inflammation Mediators/metabolism , Lipopolysaccharides , Lung/metabolism , Lung/pathology , Male , Mice, Inbred C57BL , Phosphorylation/drug effects , Signal Transduction/drug effects
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 38(3): 283-288, 2018 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-29643033

ABSTRACT

OBJECTIVE: To investigate the effects of Vaspin on lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS) in mice and explore the possible mechanism. METHODS: Forty male C57B/L6 mice were randomized equally into control group, LPS group, Vaspin group and wortmannin group with corresponding treatments. The pathological changes of the lung tissues were evaluated by HE staining, and the severity of pulmonary edema was measured according to the wet/dry ratio (W/D) of the lung tissue. The lung permeability was evaluated by detecting total protein concentrations in the bronchoalveolar lavage fluid (BALF) using bicinchoninic acid (BCA) assay. Myeloperoxidase (MPO) activity in the lung tissue was detected using a MPO assay kit, and the levels of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in the lungs were measured using ELISA. Immunohistochemical staining was performed to detect the expression of vascular cell adhesion molecule-1 (VCAM-1) and Western blotting was used to detect the protein expressions of cleaved caspase-3 and p-Akt in the lung tissues. RESULTS: Compared with the control group, the mice in LPS group displayed typical ARDS pathological changes in the lungs with significantly increased W/D, total protein concentrations in BALF, lung MPO activity, levels of IL-1ß and TNF-α, and pulmonary expressions of VCAM-1 and cleaved caspase-3 (P<0.05) but decreased expression of p-Akt (P<0.05). These changes induced by LPS were significantly alleviated by the administration of Vaspin (P<0.05). The protective effects of Vaspin against ARDS were obviously attenuated by the PI3K inhibitor wortmannin (P<0.05). CONCLUSION: Vaspin protects against LPS-induced ARDS in mice possibly by inhibiting inflammation and protecting vascular endothelium through upregulation of the PI3K/Akt signal pathway.


Subject(s)
Adipokines/metabolism , Endothelium, Vascular/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Respiratory Distress Syndrome/metabolism , Serpins/metabolism , Signal Transduction , Animals , Bronchoalveolar Lavage Fluid , Caspase 3/metabolism , Inflammation , Interleukin-1beta/metabolism , Lipopolysaccharides , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Random Allocation , Respiratory Distress Syndrome/chemically induced , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Wortmannin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...