Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 339
Filter
1.
Syst Rev ; 13(1): 183, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014437

ABSTRACT

BACKGROUND: Growing numbers of randomized clinical trials-based systematic reviews and meta-analyses (SRs/MAs) have been conducted to examine the effectiveness of acupuncture in treating gastroesophageal reflux disease (GERD). An overview of SRs/MAs will be conducted with the aim of systematically compiling, evaluating, and synthesizing the evidence regarding acupuncture for GERD. METHODS: SRs/MAs of acupuncture on GERD will be searched in eight databases. Two independent reviewers will conduct the literature search, data extraction, and review quality assessment. Utilizing the AMSTAR-2 tool, PRISMA checklists, and GRADE system, respectively, the methodological quality, reporting quality, and evidence quality will be evaluated. In relation to the subject and the overview's objects, the results will be given. This study will aid in identifying gaps between evidence and its clinical application and serve as a roadmap for further high-quality research. DISCUSSION: The results of the overview will aid in closing the gap between clinical evidence and its use in clinical practice. This study will identify significant faults in the use of evidence, point out areas where methodology needs to be improved, and provide guidance for future high-quality research. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42022371850. ETHICS AND DISSEMINATION: Ethics approval is not necessary because no personal information about individuals is collected. A peer-reviewed journal or pertinent conferences will publish the results, whichever comes first.


Subject(s)
Acupuncture Therapy , Gastroesophageal Reflux , Systematic Reviews as Topic , Humans , Gastroesophageal Reflux/therapy , Acupuncture Therapy/methods , Reproducibility of Results , Research Design , Meta-Analysis as Topic
2.
J Ethnopharmacol ; : 118527, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971342

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC), a recurrent inflammatory bowel disease, continues to challenge effective pharmacologic management. Disulfidptosis, a recently identified form of cell death, appears implicated in the progression of various diseases. Scientific studies have demonstrated that Modified Gegen Qinlian decoction (MGQD) alleviates UC symptoms. However, the underlying mechanisms remain inadequately elucidated. AIM OF THE STUDY: This study investigated the role of disulfidptosis in UC and explored the potential of MGQD to ameliorate UC by mediating disulfidptosis. METHODS: Microarray data were utilized to identify disulfidptosis-related genes stably expressed in UC, and integrated genomic analyses were conducted to elucidate the landscape of disulfidptosis in UC. Subsequently, C57BL/6J mice were administered 3% dextran sodium sulfate (DSS) to induce experimental colitis and treated with MGQD. Quantitative real-time polymerase chain reaction and immunohistochemical analysis of colonic tissues from colitis mice were performed to validate the microarray data findings. Finally, molecular docking was employed to explore the binding interactions between MGQD components and disulfidptosis biomarkers. RESULTS: Myosin heavy chain 10 (MYH10) and filamin A (FLNA) were identified as stably expressed in UC, demonstrating high diagnostic value for the disease. Correlation analysis indicated that disulfidptosis-related genes are associated with elevated levels of immune cells in UC. Single gene set enrichment analysis further clarified that these genes might be involved in the pathological processes of UC via immune-related pathways. Subsequent animal experiments revealed that MYH10 and FLNA were significantly upregulated in mice with colitis, a condition reversed by MGQD treatment. Molecular docking results showed that MYH10 and FLNA serve as stable binding targets for the primary components of MGQD. CONCLUSIONS: The study identified a connection between the disulfidptosis-related landscape and immune infiltration in UC, suggesting that MGQD may modulate disulfidptosis by inhibiting MYH10 and FLNA, thereby alleviating UC.

3.
Adv Healthc Mater ; : e2401619, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011810

ABSTRACT

Increased inflammatory responses and oxidative stress at the wound site following skin trauma impair healing. Furthermore, skin scarring places fibroblasts under severe mechanical stress and aggravates pathological fibrosis. A novel liposomal composite hydrogel is engineered for wound microenvironment remodeling, incorporating dual-loaded liposomes into gelatin methacrylate to create a nanocomposite hydrogel. Notably, tetrahydrocurcumin (THC) and hepatocyte growth factor (HGF) are encapsulated in the hydrophobic and hydrophilic layers of liposomes, respectively. The composite hydrogel maintains porous nanoarchitecture, demonstrating sustainable THC and HGF release and enhanced mechanical properties and biocompatibility. This system effectively promotes cell proliferation and angiogenesis and attenuates apoptosis. It decreases the expression of the inflammatory factors by inhibiting the high-mobility group box /receptor for advanced glycation end product/NF-κB (HMGB1/RAGE/NF-κB)pathway and increases macrophage polarization from M1 to M2 in vitro, effectively controlling inflammatory responses. It exhibits remarkable antioxidant properties by scavenging excess reactive oxygen species and free radicals. Most importantly, it effectively prevents scar formation by restraining the transforming growth factor beta (TGF-ß)/Smads pathway that downregulates associated fibrotic factors. It demonstrates strong therapeutic effects against inflammation and fibrosis in a rat skin wound model with biosafety, advancing the development of innovative hydrogel-based therapeutic delivery strategies for clinical scarless wound therapy.

4.
Article in English | MEDLINE | ID: mdl-38910477

ABSTRACT

BACKGROUND: To date, disease-modifying antirheumatic drugs (DMARDs) are widely used as the primary first-line treatment option for patients with rheumatoid arthritis (RA), and the curative effect of methotrexate (MTX) and leflunomide (LEF; MTX + LEF) is greater than that of single-agent MTX therapy, but the synergistic mechanism of MTX + LEF is unclear. METHODS: First, we explored the mechanism of action of MTX + LEF in RA through network pharmacology and molecular docking. Venn diagram analysis revealed 97 overlapping gene targets of MTX + LEF-RA and STRING, along with Cytoscape plug-in MOCDE and cytoHubba; and GO enrichment analysis revealed that the functions of 97 synergistic targets were related to 123 molecular functions (MF), 63 cell components (CC), and 1,068 biological processes (BP). The Cytoscape plug-in ClueGO demonstrated that these targets were enriched in KEGG pathways of 52 terms, whereas 9 pivotal genes were mainly involved in the signaling pathways of estrogen, Ras, Rap1, PI3K-Akt, relaxin, TNF, AMPK, FoxO, prolactin, IL-17, and adherens junction. Finally, CETSA and DARTS validated the direct binding of MTX or LEF to the selected target proteins EGFR, PPARG, MMP9, and SRC in RAW264.7 cells. RESULTS: We identified 292 MTX targets and 247 LEF targets from 7 databases. Furthermore, 2,814 potential targets of RA were identified by merging 1,925 targets from 7 databases and 999 differentially expressed genes (DEGs) between normal controls and patients with RA extracted from 5 GEO databases. Nine pivotal genes, ESR1, ALB, CASP3, EGFR, HSP90AA1, SRC, MMP9, PPARG, and IGF1, were identified. Molecular docking verified that both MTX and LEF strongly bind to most of the 9 pivotal proteins except ESR1 and IGF1. CONCLUSION: These results contribute to our understanding of the enhancement mechanism of MTX combined with LEF and provide a targeted basis for the clinical treatment of RA.

5.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1882-1887, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812200

ABSTRACT

Chemical constituents from the ethanol extract of Picrorhiza scrophulariiflora were isolated and purified by column chromatography. Their structures were identified by HR-MS, 1D and 2D-NMR, and their cytotoxicity was assessed by CCK-8 assay. Four compounds were isolated and identified as follows: 2ß-D-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosterol-5,25-diene-22-one(1), 2ß-D-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5,24-diene-22-one(2), 25-acetoxy-2ß-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5-ene-22-one(3) and 25-acetoxy-2ß-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5,23-(E)-diene-22-one(4). Compound 1 represents a new cucurbitane glycoside. The half inhibitory concentrations of the 4 compounds exceeded 100 µmol·L~(-1) against four tumor cell lines, indicating no significant cytotoxicity.


Subject(s)
Glycosides , Picrorhiza , Glycosides/chemistry , Glycosides/isolation & purification , Humans , Cell Line, Tumor , Picrorhiza/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy , Drugs, Chinese Herbal/chemistry , Triterpenes
6.
Microbiol Spectr ; 12(6): e0367123, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38690912

ABSTRACT

Lipid droplets (LDs) are dynamic organelles that participate in the regulation of lipid metabolism and cellular homeostasis inside of cells. LD-associated proteins, also known as perilipins (PLINs), are a family of proteins found on the surface of LDs that regulate lipid metabolism, immunity, and other functions. In silkworms, pébrine disease caused by infection by the microsporidian Nosema bombycis (Nb) is a severe threat to the sericultural industry. Although we found that Nb relies on lipids from silkworms to facilitate its proliferation, the relationship between PLINs and Nb proliferation remains unknown. Here, we found Nb infection caused the accumulation of LDs in the fat bodies of silkworm larvae. The characterized perilipin1 gene (plin1) promotes the accumulation of intracellular LDs and is involved in Nb proliferation. plin1 is similar to perilipin1 in humans and is conserved in all insects. The expression of plin1 was mostly enriched in the fat body rather than in other tissues. Knockdown of plin1 enhanced Nb proliferation, whereas overexpression of plin1 inhibited its proliferation. Furthermore, we confirmed that plin1 increased the expression of the Domeless and Hop in the JAK-STAT immune pathway and inhibited Nb proliferation. Taken together, our current findings demonstrate that plin1 inhibits Nb proliferation by promoting the JAK-STAT pathway through increased expression of Domeless and Hop. This study provides new insights into the complicated connections among microsporidia pathogens, LD surface proteins, and insect immunity.IMPORTANCELipid droplets (LDs) are lipid storage sites in cells and are present in almost all animals. Many studies have found that LDs may play a role in host resistance to pathogens and are closely related to innate immunity. The present study found that a surface protein of insect lipid droplets could not only regulate the morphological changes of lipid droplets but also inhibit the proliferation of a microsporidian pathogen Nosema bombycis (Nb) by activating the JAK-STAT signaling pathway. This is the first discovery of the relationship between microsporidian pathogen and insect lipid surface protein perilipin and insect immunity.


Subject(s)
Bombyx , Insect Proteins , Janus Kinases , Lipid Droplets , Nosema , Perilipin-1 , Signal Transduction , Bombyx/microbiology , Bombyx/metabolism , Bombyx/genetics , Animals , Nosema/metabolism , Nosema/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Lipid Droplets/metabolism , Janus Kinases/metabolism , Janus Kinases/genetics , Perilipin-1/metabolism , Perilipin-1/genetics , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics , Fat Body/metabolism , Larva/microbiology , Larva/metabolism , Lipid Metabolism
7.
J Econ Entomol ; 117(3): 772-781, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38691061

ABSTRACT

Microsporidia Nosema bombycis (Nb) is a cellular parasite responsible for pébrine disease in silkworms, significantly impacting the sericulture industry. Long non-coding RNAs (lncRNAs), which are RNA fragments longer than 200 nucleotides, are pivotal in a range of cellular and physiological functions. However, the potential role of silkworm lncRNAs in response to Nb infection remains unknown. This study conducted transcriptome sequencing on both larvae and Nb-infected midguts of silkworms, identifying 1,440 lncRNAs across all examined midgut samples. Within the Nb-infected group, 42 differentially expressed lncRNAs (DElncRNAs) and 305 differentially expressed mRNAs (DEmRNAs) were detected. Functional annotation and pathway analysis showed that these DEmRNAs are mostly involved in metabolism, apoptosis, autophagy, and other key pathways. The co-expression network of DEmRNAs and DElncRNAs illustrates that 1 gene could be regulated by multiple lncRNAs and 1 lncRNA may target multiple genes, indicating that the regulation of lncRNA is intricate and networked. In addition, the DElncRNA-miRNA-mRNA network showed that some DElncRNAs may be involved in the immune response and metabolism through miRNA. Notably, the study observed an increase in lncRNA MSTRG857.1 following Nb infection, which may promote Nb proliferation. These findings offer insights into the complex interplay between insects and microsporidia.


Subject(s)
Bombyx , Larva , Nosema , RNA, Long Noncoding , Bombyx/genetics , Bombyx/microbiology , Animals , RNA, Long Noncoding/genetics , Nosema/physiology , Larva/microbiology , Larva/growth & development , Larva/genetics , Transcriptome
8.
Front Biosci (Landmark Ed) ; 29(5): 189, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38812317

ABSTRACT

BACKGROUND: It has been demonstrated that exosomes derived from HPV-16 E7-over-expressiong non-small cell lung cancer (NSCLC) cells (E7 Exo) trigger increased levels of epidermal growth factor receptor (EGFR) and miR-381-3p. The purpose of this investigation was to examine the role of E7 Exo in NSCLC angiogenesis, and to analyze the contribution of exosomal EGFR and miR-381-3p to it. METHODS: The influence of E7 Exo on the proliferation and migration of human umbilical vein endothelial cells (HUVECs) was assessed using colony formation and transwell migration assays. Experiments on both cells and animal models were conducted to evaluate the angiogenic effect of E7 Exo treatment. The involvement of exosomal EGFR and miR-381-3p in NSCLC angiogenesis was further investigated through suppressing exosome release or EGFR activation, or by over-expressing miR-381-3p. RESULTS: Treatment with E7 Exo increased the proliferation, migration, and tube formation capacities of HUVECs, as well as angiogenesis in animal models. The suppression of exosome release or EGFR activation in NSCLC cells decreased the E7-induced enhancements in HUVEC migration and tube formation, and notably reduced vascular endothelial growth factor A (VEGFA) and Ang-1 levels. HUVECs that combined miR-381-3p mimic transfection and E7 Exo treatment exhibited a more significant tube-forming capacity than E7 Exo-treated HUVECs alone, but were reversed by the miR-381-3p inhibitor. CONCLUSION: The angiogenesis induced by HPV-16 E7 in NSCLC is mediated through exosomal EGFR and miR-381-3p.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Movement , Cell Proliferation , ErbB Receptors , Exosomes , Human Umbilical Vein Endothelial Cells , Lung Neoplasms , MicroRNAs , Neovascularization, Pathologic , Papillomavirus E7 Proteins , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Exosomes/metabolism , Exosomes/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/blood supply , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Animals , Cell Line, Tumor , Mice , Mice, Nude , Human papillomavirus 16/genetics , Angiogenesis
9.
Chin J Integr Med ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676828

ABSTRACT

The progression from gastric mucosal inflammation to cancer signifies a pivotal event in the trajectory of gastric cancer (GC) development. Chinese medicine (CM) exhibits unique advantages and holds significant promise in inhibiting carcinogenesis of the gastric mucosa. This review intricately examines the critical pathological events during the transition from gastric mucosal inflammation-cancer transformation (GMICT), with a particular focus on pathological evolution mechanisms of spasmolytic polypeptide-expressing metaplasia (SPEM). Moreover, it investigates the pioneering applications and advancements of CM in intervening within the medical research domain of precancerous transformations leading to GC. Furthermore, the analysis extends to major shortcomings and challenges confronted by current research in gastric precancerous lesions, and innovative studies related to CM are presented. We offer a highly succinct yet optimistic outlook on future developmental trends. This paper endeavors to foster a profound understanding of forefront dynamics in GMICT research and scientific implications of modernizing CM. It also introduces a novel perspective for establishing a collaborative secondary prevention system for GC that integrates both Western and Chinese medicines.

10.
Bioinform Adv ; 4(1): vbae022, 2024.
Article in English | MEDLINE | ID: mdl-38638281

ABSTRACT

Motivation: Scientists world-wide are putting together massive efforts to understand how the biodiversity that we see on Earth evolved from single-cell organisms at the origin of life and this diversification process is represented through the Tree of Life. Low sampling rates and high heterogeneity in the rate of evolution across sites and lineages produce a phenomenon denoted "long branch attraction" (LBA) in which long nonsister lineages are estimated to be sisters regardless of their true evolutionary relationship. LBA has been a pervasive problem in phylogenetic inference affecting different types of methodologies from distance-based to likelihood-based. Results: Here, we present a novel neural network model that outperforms standard phylogenetic methods and other neural network implementations under LBA settings. Furthermore, unlike existing neural network models in phylogenetics, our model naturally accounts for the tree isomorphisms via permutation invariant functions which ultimately result in lower memory and allows the seamless extension to larger trees. Availability and implementation: We implement our novel theory on an open-source publicly available GitHub repository: https://github.com/crsl4/nn-phylogenetics.

11.
Microb Pathog ; 191: 106649, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636568

ABSTRACT

Bombyx mori nucleopolyhedrovirus (BmNPV) is a very common and infectious virus that affects silkworms and hinders silk production. To investigate the intestinal flora of BmNPV-resistant and BmNPV-sensitive silkworm varieties, 16 S rDNA high-throughput sequencing was performed. The results of the cluster analysis showed that the intestinal flora of the resistant silkworm variety was more abundant than that of the sensitive silkworm variety. This was found even when infection with BmNPV caused a sharp decline in the number of intestinal floral species in both resistant and sensitive silkworm varieties. The abundances of the intestinal flora, including Aureimonas, Ileibacterium, Peptostreptococcus, Pseudomonas, Enterococcus, and Halomonas, in the resistant variety were considerably greater after infection with BmNPV than those in the sensitive variety. After infection with BmNPV, four kinds of important intestinal bacteria, namely, f_Saccharimonadaceae, Peptostreptococcus, Aureirmonas, and f_Rhizobiaceae, were found in the resistant silkworm variety. In the sensitive silkworm variety, only Faecalibaculum was an important intestinal bacterium. The differential or important bacteria mentioned above might be involved in immunoreaction or antiviral activities, especially in the intestines of BmNPV-resistant silkworms. By conducting a functional enrichment analysis, we found that BmNPV infection did not change the abundance of important functional components of the intestinal flora in resistant or sensitive silkworm varieties. However, some functional factors, such as the biosynthesis, transport, and catabolism of secondary metabolites (e.g., terpenoids and polyketides) and lipid transport and metabolism, were more important in the resistant silkworm variety than in the sensitive variety; thus, these factors may increase the resistance of the host to BmNPV. To summarize, we found significant differences in the composition, abundance, and function of the intestinal flora between resistant and sensitive silkworm varieties, especially after infection with BmNPV, which might be closely related to the resistance of resistant silkworm varieties to BmNPV.


Subject(s)
Bacteria , Bombyx , Gastrointestinal Microbiome , Nucleopolyhedroviruses , RNA, Ribosomal, 16S , Animals , Bombyx/virology , Bombyx/microbiology , Nucleopolyhedroviruses/physiology , Nucleopolyhedroviruses/genetics , Gastrointestinal Microbiome/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , High-Throughput Nucleotide Sequencing , Disease Resistance , DNA, Ribosomal/genetics , DNA, Bacterial/genetics
12.
Sci Rep ; 14(1): 6681, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509141

ABSTRACT

Improving drug sensitivity is an important strategy in chemotherapy of cancer and accumulating evidence indicates that miRNAs are involved in the regulation of drug sensitivity, but the specific mechanism is still unclear. Our previous study has found that miR-296-5p was significantly downregulated in nasopharyngeal carcinoma (NPC). Here, we aim to explore whether miR-296-5p is involved in regulating cisplatin sensitivity in NPC by regulating STAT3/KLF4 signaling axis. The cell proliferation and clonogenic capacity of NPC cells were evaluated by CCK8 Assay and plate colony assay, respectively. The Annexin V-FITC staining kit was used to determine and quantify the apoptotic cells using flow cytometry. The drug efflux ability of NPC cells were determined by Rhodamine 123 efflux experiment. The expression of miR-296-5p, apoptosis-related genes and protein in NPC cell lines were detected by qPCR and Western blot, respectively. Animal study was used to evaluate the sensitivity of NPC cells to DDP treatment in vivo. Our results showed that elevated miR-296-5p expression obviously promoted the sensitivity of NPC cells to DDP by inhibiting cell proliferation and clonogenic capacity, and inducing apoptosis. In addition, we found that miR-296-5p inhibited the expression of STAT3 and KLF4 in NPC cells, while overexpression of exogenous STAT3 reversed miR-296-5p-mediated enhancement in cell death of DDP-treated NPC cells. In vivo studies further confirmed that miR-296-5p promotes the sensitivity of NPC cells to DDP treatment. miRNA-296-5p enhances the drug sensitivity of nasopharyngeal carcinoma cells to cisplatin via STAT3/KLF4 signaling pathway.


Subject(s)
MicroRNAs , Nasopharyngeal Neoplasms , Animals , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cisplatin/metabolism , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Cell Proliferation , Gene Expression Regulation, Neoplastic , Drug Resistance, Neoplasm/genetics
13.
J Fungi (Basel) ; 10(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38535237

ABSTRACT

Chaperonin containing tailless complex polypeptide 1 (CCT) is a molecular chaperone protein that consists of eight completely different subunits and assists in the folding of newly synthesized peptides. The zeta subunit of CCT is a regulatory factor for the folding and assembly of cytoskeletal proteins as individuals or complexes. In this study, the zeta subunit of Nosema bombycis (NbCCTζ) is identified for the first time. The complete ORF of the NbCCTζ gene is 1533 bp in length and encodes a 510 amino acid polypeptide. IFA results indicate that NbCCTζ is colocalized with actin and ß-tubulin in the cytoplasm during the proliferative phase and that NbCCTζ is completely colocalized with NbCCTα in the cytoplasm of N. bombycis throughout the entire life cycle. Furthermore, the yeast two-hybrid assay revealed that the NbCCTζ interacts with NbCCTα. The transcriptional level of NbCCTζ is significantly downregulated by knocking down the NbCCTα gene, while the transcriptional level of NbCCTα is downregulated after knocking down the NbCCTζ gene. These results suggest that NbCCTζ may play a vital role in the proliferation of N. bombycis by coordinating with NbCCTα.

14.
Front Nutr ; 11: 1304127, 2024.
Article in English | MEDLINE | ID: mdl-38544758

ABSTRACT

Introduction: Few studies are about the relationship between anemia and obesity, and previous studies have only paid attention to BMI. Methods and Results: We first included body fat percentage (BF%) as an assessment indicator and divided it into quartiles, grouped participants into obesity and non-obesity used data from NHANES database. After adjustment for age, gender, ethnicity, education and family income, the level of soluble transferrin receptor (sTfR), and incidence of elevated CRP or HsCRP were progressively higher with increased BF%, whereas mean cell volume (MCV), natural logarithm (Ln) serum ferritin (SF), and Ln SF/sTfR were progressively reduced. Although a higher prevalence of anemia and lower hemoglobin was observed with increased BF%, but there was no statistical difference. Women in the highest BF% group demonstrated a significantly higher risk of iron deficiency compared to those in the lowest BF% group. Discussion: BF% should be given more attention, and women with high BF% should pay attention to iron deficiency.

15.
Heliyon ; 10(6): e27819, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38496853

ABSTRACT

Background: The concept of the gut-liver axis was proposed by Marshall in 1998, and since then, this hypothesis has been gradually accepted by the academic community. Many publications have been published on the gut-liver axis, making it important to assess the scientific implications of these studies and the trends in this field. Methods: Publications were retrieved from the Web of Science Core Collection. Microsoft Excel, CiteSpace, VOSviewer, and Scimago Graphica software were used for bibliometric analysis. Results: A total of 776 publications from the Web of Science core database were included in this study. In the past 25 years, the number of publications on the gut-liver axis has shown an upward trend, particularly in the past 3 years (2020-2022). China had the highest number of publications (267 articles, 34.4%). However, the United States was at the top regarding influence and international cooperation in this field. The University of California San Diego had contributed the most publications. Suk, Ki Tae and Schnabl, Bernd were tied for the first rank in most publications. Thematic hotspots and frontiers were focused on gut microbiota, microbial metabolite, intestinal permeability, bacterial translocation, bile acid, non-alcoholic steatohepatitis, and alcoholic liver disease. Conclusion: Our study is the first bibliometric analysis of literature using visualization software to present the current research status of the gut-liver axis over the past 25 years. The damage and repair of intestinal barrier function, as well as the disruption of gut microbiota and host metabolism, should be a focus of attention. This study can provide a reference for later researchers to understand the global research trends, hotspots, and frontiers in this field.

16.
Phytomedicine ; 127: 155481, 2024 May.
Article in English | MEDLINE | ID: mdl-38452693

ABSTRACT

BACKGROUND: Functional dyspepsia (FD) is a prevalent and challenging gastrointestinal disorder. Conventional medicine often faces limitations in providing effective treatment for FD, thus indicating the need to explore alternative approaches. Traditional Chinese medicine (TCM), which is rooted in ancient Chinese traditions and has evolved over thousands of years, offers a holistic approach to well-being. TCM incorporates herbal remedies, acupuncture, and other therapies while shaping the future of complementary and alternative medicine. PURPOSE: To review the existing literature on the current status and future prospects of using TCM to treat FD. METHODS: We extensively searched the PubMed, Google Scholar, Embase, an China National Knowledge Internet databases from inception to May 31, 2023 to identify relevant literature. We also searched the reference lists of the included articles. RESULTS: Clinical evidence-based research has explored the efficacy of TCM in treating FD. Recent research has illuminated the multifaceted mechanisms through which TCM interventions affect FD. TCM is a promising alternative, as it emphasizes a holistic approach and holds potential advantages in addressing the complex nature of FD. CONCLUSIONS: The integration of TCM and Western medicine offers a comprehensive approach to understanding and managing FD by bridging traditional wisdom with modern scientific understanding. This paper highlights the practical implications of this integration, the challenges to be addressed, and the potential for international collaboration to further elucidate the efficacy of TCM. However, continued research and dialog are needed to advance the modern development of TCM and to improve the quality of life of FD patients.


Subject(s)
Drugs, Chinese Herbal , Dyspepsia , Humans , Drugs, Chinese Herbal/therapeutic use , Dyspepsia/drug therapy , Medicine, Chinese Traditional , Phytotherapy , Quality of Life
17.
Nat Commun ; 15(1): 1673, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396052

ABSTRACT

The PD-1/PD-L1 pathway in mucosal immunity is currently actively explored and considered as a target for inflammatory bowel disease (IBD) treatment. However, systemic PD-L1 administration may cause unpredictable adverse effects due to immunosuppression. Here we show that reactive oxygen species (ROS)-responsive nanoparticles enhance the efficacy and safety of PD-L1 in a mouse colitis model. The nanoparticles control the accumulation and release of PD-L1 fused to Fc (PD-L1-Fc) at inflammatory sites in the colon. The nanotherapeutics shows superiority in alleviating inflammatory symptoms over systemic PD-L1-Fc administration and mitigates the adverse effects of PD-L1-Fc administration. The nanoparticles-formulated PD-L1-Fc affects production of proinflammatory and anti-inflammatory cytokines, attenuates the infiltration of macrophages, neutrophils, and dendritic cells, increases the frequencies of Treg, Th1 and Tfh cells, reshapes the gut microbiota composition; and increases short-chain fatty acid production. In summary, PD-L1-Fc-decorated nanoparticles may provide an effective and safe strategy for the targeted treatment of IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mice , Animals , B7-H1 Antigen/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Cytokines/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Macrophages/metabolism , Disease Models, Animal
18.
Parasitol Res ; 123(1): 59, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38112902

ABSTRACT

Nosema bombycis, an obligate intracellular parasite, is a single-celled eukaryote known to infect various tissues of silkworms, leading to the manifestation of pebrine. Trehalase, a glycosidase responsible for catalyzing the hydrolysis of trehalose into two glucose molecules, assumes a crucial role in thermal stress tolerance, dehydration, desiccation stress, and asexual development. Despite its recognized importance in these processes, the specific role of trehalase in N. bombycis remains uncertain. This investigation focused on exploring the functions of trehalase 3 in N. bombycis (NbTre3). Immunofluorescence analysis of mature (dormant) spores indicated that NbTre3 primarily localizes to the spore membrane or spore wall, suggesting a potential involvement in spore germination. Reverse transcription-quantitative polymerase chain reaction results indicated that the transcriptional level of NbTre3 peaked at 6 h post N. bombycis infection, potentially contributing to energy storage for proliferation. Throughout the life cycle of N. bombycis within the host cell, NbTre3 was detected in sporoplasm during the proliferative stage rather than the sporulation stage. RNA interference experiments revealed a substantial decrease in the relative transcriptional level of NbTre3, accompanied by a certain reduction in the relative transcriptional level of Nb16S rRNA. These outcomes suggest that NbTre3 may play a role in the proliferation of N. bombycis. The application of the His pull-down technique identified 28 proteins interacting with NbTre3, predominantly originating from the host silkworm. This finding implies that NbTre3 may participate in the metabolism of the host cell, potentially utilizing the host cell's energy resources.


Subject(s)
Bombyx , Microsporidiosis , Nosema , Animals , Trehalase/genetics , Trehalase/metabolism , Spores, Fungal/metabolism , Nosema/genetics , Bombyx/parasitology
19.
Article in English | MEDLINE | ID: mdl-37952188

ABSTRACT

The infection of Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the main causes of economic losses in sericulture. Thus, it is essential to establish rapid and effective method for BmNPV detection. In the present study, we have developed a recombinase-aided amplification (RAA) to amplify the BmNPV genomic DNA at 37 °C within 30 min, and achieved a rapid detection method by coupling with a lateral flow dipstick (LFD). The RAA-LFD method had a satisfactory detection limit of 6 copies/µL of recombinant plasmid pMD19-T-IE1, and BmNPV infection of silkworm can be detected 12 h post-infection. This method was highly specific for BmNPV, and without cross-reactivity to other silkworm pathogens. In contrast to conventional polymerase chain reaction (PCR), the RAA-LFD assay showed higher sensitivity, cost-saving, and especially is apt to on-site detection of BmNPV infection in the sericulture production.

20.
J Fungi (Basel) ; 9(10)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37888246

ABSTRACT

Nosema bombycis is a representative species of Microsporidia, and is the pathogen that causes pebrine disease in silkworms. In the process of infection, the polar tube of N. bombycis is injected into the host cells. During proliferation, N. bombycis recruits the mitochondria of host cells. The general transcriptional corepressor Ssn6 contains six tetratricopeptide repeats (TPR) and undertakes various important functions. In this study, we isolated and characterized Nbssn6 of the microsporidium N. bombycis. The Nbssn6 gene contains a complete ORF of 1182 bp in length that encodes a 393 amino acid polypeptide. Indirect immunofluorescence assay showed that the Ssn6 protein was mainly distributed in the cytoplasm and nucleus at the proliferative phase of N. bombycis. We revealed the interaction of Nbssn6 with polar tube protein 2 (Nbptp2) and the transcriptional repressor for RNA polymerase II (Nbtrrp2) by Co-IP and yeast two-hybrid assays. Results from RNA interference further confirmed that the transcriptional level of Nbptp2 and Nbtrrp2 was regulated by Nbssn6. These results suggest that Nbssn6 impacts the infection and proliferation of N. bombycis via interacting with the polar tube protein and transcriptional repressor for RNA polymerase II.

SELECTION OF CITATIONS
SEARCH DETAIL
...