Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Mol Biol Plants ; 30(6): 877-891, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974354

ABSTRACT

Natural leaf senescence is critical for plant fitness. Drought-induced premature leaf senescence affects grape yield and quality. However, reports on the regulatory mechanisms underlying premature leaf senescence under drought stress are limited. In this study, two-year-old potted 'Muscat Hamburg' grape plants were subjected to continuous natural drought treatment until mature leaves exhibited senescence symptoms. Physiological and biochemical indices related to drought stress and senescence were monitored. Transcriptome and transgenic Arabidopsis were used to perform expression analyses and functional identification of drought-induced senescence-associated genes. Twelve days of continuous drought stress was sufficient to cause various physiological disruptions and visible senescence symptoms in mature 'Muscat Hamburg' leaves. These disruptions included malondialdehyde and H2O2 accumulation, and decreased catalase activity and chlorophyll (Chl) levels. Transcriptome analysis revealed that most genes involved in photosynthesis and Chl synthesis were downregulated after 12 d of drought treatment. Three key Chl catabolic genes (SGR, NYC1, and PAO) were significantly upregulated. Overexpression of VvSGR in wild Arabidopsis further confirmed that SGR directly promoted early yellowing of cotyledons and leaves. In addition, drought treatment decreased expression of gibberellic acid signaling repressors (GAI and GAI1) and cytokinin signal components (AHK4, AHK2, RR22, RR9-1, RR9-2, RR6, and RR4) but significantly increased the expression of abscisic acid, jasmonic acid, and salicylic acid signaling components and responsive transcription factors (bZIP40/ABF2, WRKY54/75/70, ANAC019, and MYC2). Moreover, some NAC members (NAC0002, NAC019, and NAC048) may also be drought-induced senescence-associated genes. These results provide extensive information on candidate genes involved in drought-induced senescence in grape leaves. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01465-2.

2.
J Agric Food Chem ; 72(26): 15027-15039, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38886897

ABSTRACT

Abscisic acid (ABA) is a major regulator of nonclimacteric fruit ripening, with its processes involving epigenetic mechanisms. It remains unclear whether DNA methylation is associated with ABA-regulated ripening. In this study, we investigated the patterns of DNA methylation and gene expression following ABA treatment in grape berries by using whole-genome bisulfite sequencing and RNA-sequencing. ABA application changed global DNA methylation in grapes. The hyper-/hypo-differently methylated regions were enriched in defense-related metabolism, degreening processes, or ripening-related metabolic pathways. Many differentially expressed genes showed an alteration in DNA methylation after ABA treatment. Specifically, ten downregulated genes with hypermethylation in promoters were involved in the ripening process, ABA homeostasis/signaling, and stress response. Nine upregulated genes exhibiting hypo-methylation in promoters were related to the ripening process and stress response. These findings demonstrated ABA-induced DNA alteration of ripening related and stress-responsive genes during grape ripening, which provides new insights of the epigenetic regulation of ABA on fruit ripening.


Subject(s)
Abscisic Acid , DNA Methylation , Epigenesis, Genetic , Fruit , Gene Expression Regulation, Plant , Plant Proteins , Vitis , Vitis/genetics , Vitis/growth & development , Vitis/metabolism , Vitis/drug effects , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , DNA Methylation/drug effects , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Fruit/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Epigenesis, Genetic/drug effects , Stress, Physiological/genetics , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Promoter Regions, Genetic
3.
Molecules ; 28(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446901

ABSTRACT

Nonconventional luminescent materials (NLMs) which do not contain traditional aromatic chromophores are of great interest due to their unique chemical structures, optical properties, and their potential applications in various areas, such as cellular imaging and chemical sensing. However, most reported NLMs show weak or no emission in dilute solutions, which severely limits their applications. In this work, dynamic hydrogen bonds were utilized to design NLMs with efficient emission in dilute solutions. To further validate the results, polymers P1 and P2 were successfully prepared and investigated. It was found that the luminescence quantum efficiency of P1 and P2 at a concentration of 0.1 mg/mL in water solution was 8.9 and 0.6%, respectively. The high efficiency can be attributed to the fact that polymer P1 has more intra- or intermolecular dynamic hydrogen bonds and other short interactions than P2 in dilute solutions, allowing P1 to achieve the through-space conjugation effect to increase the degree of system conjugation, restrict molecular motion, and decrease nonradiative transitions, which can effectively improve luminescence. In addition, polymer P2 exhibits the characteristics of clustering-triggered emission, excitation wavelength-dependent and concentration-dependent fluorescence properties, excellent photobleaching resistance, low cytotoxicity, and selective recognition of Fe3+. The present study investigates the manipulation of luminescence properties of NLMs in dilute solutions through the modulation of dynamic hydrogen bonds. This approach can serve as a semi-empirical technique for designing and building innovative NLMs in the times ahead.


Subject(s)
Luminescence , Polymers , Hydrogen Bonding , Polymers/chemistry , Fluorescence
4.
Materials (Basel) ; 16(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37297328

ABSTRACT

Organic luminescent materials with high luminescence efficiency in both solution and solid states, namely dual-state emission (DSE), have attracted considerable attention due to their promising applications in various fields. In order to enrich the variety of DSE materials, carbazole, similar to triphenylamine (TPA), was utilized to construct a novel DSE luminogen named 2-(4-(9H-carbazol-9-yl)phenyl)benzo[d]thiazole (CZ-BT). CZ-BT exhibited DSE characteristics with fluorescence quantum yields of 70, 38 and 75% in solution, amorphous and crystalline states, respectively. CZ-BT shows thermochromic and mechanochromic properties in solution and solids, respectively. Theoretical calculations show that there is a small conformational difference between the ground state and the lowest singly excited state of CZ-BT and that it exhibits a low non-radiative transition characteristic. The oscillator strength during the transition from the single excited state to the ground state reaches 1.0442. CZ-BT adopts a distorted molecular conformation with intramolecular hindrance effects. The excellent DSE properties of CZ-BT can be explained well using theoretical calculations and experimental results. In terms of application, the CZ-BT has a detection limit for the hazardous substance picric acid of 2.81 × 10-7 mol/L.

5.
Int J Mol Sci ; 23(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36361520

ABSTRACT

Natural leaf senescence is an acclimation strategy that enables plants to reallocate nutrients. In the present study, interestingly, we found that the basal mature leaves of grapevine primary shoots (P) exhibited the earliest senescence, followed by the apical young leaves of secondary shoots (ST), and then the basal mature leaves of secondary shoots (S). The Chl level decreased with the extent of leaf senescence. According to the genome-wide identification and expression analysis, sixteen senescence-associated genes (SAGs) involved in Chl breakdown were identified in the grapevine genome. Their expression patterns showed that the transcript changes in VvSGR, VvPPH2, and VvFtsH6-2 corresponded to the changes in Chl content among P, S, and ST. The changes in the transcription of VvNYC1, VvSGR, VvPAO1, VvPAO2, VvPAO4, VvPPH1, VvPPH3, and VvFtsH6-1 only contributed to low Chl levels in P. The cis-element analysis indicated that these SAGs possessed several light- and hormone-responsive elements in their promoters. Among them, ABA-responsive elements were found in twelve of the sixteen promoters of SAGs. Correspondingly, ABA-signaling components presented various changes in transcription among P, S, and ST. The transcription changes in VvbZIP45 and VvSnRK2.1 were similar to those in VvSGR, VvPPH2, and VvFtsH6-2. The other nine ABA-signaling components, which included VvRCAR2, VvRCAR4, VvRCAR6, VvRCAR7, VvRCAR2, VvPP2C4, VvPP2C9, VvbZIP25, and VvSnRK2.3, were highly expressed in P but there was no difference between S and ST, with similar expression patterns for VvNYC1, VvSGR, VvPAO1, VvPAO2, VvPAO4, VvPPH1, VvPPH3, and VvFtsH6-1. These results suggested that the senescence of P and ST could be regulated by different members of Chl breakdown-related SAGs and ABA-signaling components. These findings provide us with important candidate genes to further study the regulation mechanism of leaf senescence order in grapevine.


Subject(s)
Vitis , Vitis/metabolism , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Senescence , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...