Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Sci J ; 90(3): 393-400, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30644155

ABSTRACT

Soybeans are used increasingly in food products because of their health benefits. In this study, we investigated the effect of soybean antigen protein on weaned piglet intestine. Seventy piglets were randomly divided into seven groups with 10 piglets each. At 7 and 14 days of age, groups A-C were injected with saline, and D-G were intramuscularly injected with or orally administered 7S or 11S. Groups B-G were artificially sensitized by dietary 7S or 11S. At 27 days, the small intestinal tissues were collected to determine levels of histamine, sIgA protein, and IgA mRNA. Histamine in B-G was significantly decreased in the duodenum and ileum. Moreover, sIgA expression was higher in all groups than in A, with B/C>D-G and F/G>D/E; the trend in IgA expression was similar. Collectively, these results indicated that soybean antigen protein-immunizing agents decrease sIgA and IgA levels. Additionally, the effect of injection immunization occurred prior to that of oral immunization.


Subject(s)
Antigens/immunology , Immunoglobulin A, Secretory/metabolism , Immunoglobulin A/metabolism , Intestine, Small/immunology , Soybean Proteins/immunology , Swine/immunology , Administration, Oral , Age Factors , Animals , Gene Expression/immunology , Histamine/metabolism , Immunoglobulin A/genetics , Immunoglobulin A, Secretory/genetics , Injections, Intramuscular , RNA, Messenger/metabolism , Weaning
2.
J Agric Food Chem ; 66(36): 9534-9541, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30139257

ABSTRACT

ß-Conglycinin (7S) and glycinin (11S) are known to induce a variety of hypersensitivity reactions involving the skin, intestinal tract, and respiratory tract. The present study aimed to identify the mechanism underlying the development of allergy to soybean antigen proteins, using piglets as an animal model. Weaned "Duroc × Landrace × Yorkshire" piglets were fed a diet supplemented with 7S or 11S to investigate the signaling pathway involved in intestinal damage in piglets. Results showed that serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and caspase-3 levels were significantly higher in 7S- and 11S-fed piglets compared to those in suckling or weaned ones. mRNA, protein, and phosphorylation levels of nuclear factor-kappa B (NF-κB), p38, and Jun N-terminal kinase (JNK) were higher in 7S- and 11S-fed piglets than in suckling and weaned ones. Overall, our results indicate that 7S and 11S damaged the intestinal function in piglets through their impact on NF-κB, JNK, and p38 expression.


Subject(s)
Antigens, Plant/immunology , Food Hypersensitivity/immunology , Globulins/immunology , Glycine max/chemistry , Intestines/injuries , MAP Kinase Kinase 4/immunology , NF-kappa B/immunology , Seed Storage Proteins/immunology , Soybean Proteins/immunology , p38 Mitogen-Activated Protein Kinases/immunology , Animals , Antigens, Plant/adverse effects , Food Hypersensitivity/etiology , Food Hypersensitivity/genetics , Globulins/adverse effects , Humans , Intestines/immunology , MAP Kinase Kinase 4/genetics , MAP Kinase Signaling System , NF-kappa B/genetics , Seed Storage Proteins/adverse effects , Soybean Proteins/adverse effects , Glycine max/immunology , Swine , p38 Mitogen-Activated Protein Kinases/genetics
3.
Gene ; 665: 119-126, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-29705127

ABSTRACT

Inbreeding depression is the reduction in fitness observed in inbred populations. In plants, it leads to disease, weaker resistance to adverse environmental conditions, inhibition of growth, and decrease of yield. To elucidate molecular mechanisms behind inbreeding depression, we compared global DNA methylation and transcriptome profiles of a normal and a highly inbred heading degenerated variety of the Chinese cabbage (Brassica rapa L. ssp. pekinensis). DNA methylation was reduced in inbred plants, suggesting a change in the epigenetic landscape. Transcriptome analysis by RNA-Seq revealed that genes in auxin-response and synthesis pathways were differentially expressed in the inbreeding depression lines. Interestingly, methylation levels of some of those genes were also changed. Furthermore, endogenous IAA content was decreased in inbred plants, in agreement with expression and methylation data. Chemical inhibition of auxin also replicated the degenerated phenotype in normal plants, while exogenous IAA application had no effect in inbred depression plants, suggesting a more complex mechanism. These data indicate DNA methylation-regulated auxin pathways play a role in establishing inbred depression phenotypes in plants. Our findings reveal new insights into inbreeding depression and leafy head development in Chinese cabbage.


Subject(s)
Brassica rapa , DNA Methylation , DNA, Plant , Epigenesis, Genetic , Gene Expression Profiling , Genome, Plant , Brassica rapa/genetics , Brassica rapa/metabolism , DNA, Plant/genetics , DNA, Plant/metabolism , Inbreeding
SELECTION OF CITATIONS
SEARCH DETAIL
...