Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Netw Learn Syst ; 32(11): 5194-5207, 2021 11.
Article in English | MEDLINE | ID: mdl-33156795

ABSTRACT

An approximate logic neural model (ALNM) is a novel single-neuron model with plastic dendritic morphology. During the training process, the model can eliminate unnecessary synapses and useless branches of dendrites. It will produce a specific dendritic structure for a particular task. The simplified structure of ALNM can be substituted by a logic circuit classifier (LCC) without losing any essential information. The LCC merely consists of the comparator and logic NOT, AND, and OR gates. Thus, it can be easily implemented in hardware. However, the architecture of ALNM affects the learning capacity, generalization capability, computing time and approximation of LCC. Thus, a Pareto-based multiobjective differential evolution (MODE) algorithm is proposed to simultaneously optimize ALNM's topology and weights. MODE can generate a concise and accurate LCC for every specific task from ALNM. To verify the effectiveness of MODE, extensive experiments are performed on eight benchmark classification problems. The statistical results demonstrate that MODE is superior to conventional learning methods, such as the backpropagation algorithm and single-objective evolutionary algorithms. In addition, compared against several commonly used classifiers, both ALNM and LCC are capable of obtaining promising and competitive classification performances on the benchmark problems. Besides, the experimental results also verify that the LCC obtains the faster classification speed than the other classifiers.


Subject(s)
Algorithms , Databases, Factual/standards , Logic , Neural Networks, Computer , Dendrites/physiology , Humans , Neuronal Plasticity/physiology , Reproducibility of Results , Synapses/physiology
2.
Comput Intell Neurosci ; 2018: 9390410, 2018.
Article in English | MEDLINE | ID: mdl-29606961

ABSTRACT

Nowadays, credit classification models are widely applied because they can help financial decision-makers to handle credit classification issues. Among them, artificial neural networks (ANNs) have been widely accepted as the convincing methods in the credit industry. In this paper, we propose a pruning neural network (PNN) and apply it to solve credit classification problem by adopting the well-known Australian and Japanese credit datasets. The model is inspired by synaptic nonlinearity of a dendritic tree in a biological neural model. And it is trained by an error back-propagation algorithm. The model is capable of realizing a neuronal pruning function by removing the superfluous synapses and useless dendrites and forms a tidy dendritic morphology at the end of learning. Furthermore, we utilize logic circuits (LCs) to simulate the dendritic structures successfully which makes PNN be implemented on the hardware effectively. The statistical results of our experiments have verified that PNN obtains superior performance in comparison with other classical algorithms in terms of accuracy and computational efficiency.


Subject(s)
Algorithms , Neural Networks, Computer , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...