Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.498
Filter
1.
Cogn Neurodyn ; 18(3): 947-960, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826651

ABSTRACT

Visual joint attention, the ability to track gaze and recognize intent, plays a key role in the development of social and language skills in health humans, which is performed abnormally hard in autism spectrum disorder (ASD). The traditional convolutional neural network, EEGnet, is an effective model for decoding technology, but few studies have utilized this model to address attentional training in ASD patients. In this study, EEGNet was used to decode the P300 signal elicited by training and the saliency map method was used to visualize the cognitive properties of ASD patients during visual attention. The results showed that in the spatial distribution, the parietal lobe was the main region of classification contribution, especially for Pz electrode. In the temporal information, the time period from 300 to 500 ms produced the greatest contribution to the electroencephalogram (EEG) classification, especially around 300 ms. After training for ASD patients, the gradient contribution was significantly enhanced at 300 ms, which was effective only in social scenarios. Meanwhile, with the increase of joint attention training, the P300 latency of ASD patients gradually shifted forward in social scenarios, but this phenomenon was not obvious in non-social scenarios. Our results indicated that joint attention training could improve the cognitive ability and responsiveness of social characteristics in ASD patients.

2.
CNS Neurosci Ther ; 30(6): e14779, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828650

ABSTRACT

AIMS: Previous neuroimaging studies of vascular cognitive impairment, no dementia (VCIND), have reported functional alterations, but far less is known about the effects of cognitive training on functional connectivity (FC) of intrinsic connectivity networks (ICNs) and how they relate to intervention-related cognitive improvement. This study provides comprehensive research on the changes in intra- and inter-brain functional networks in patients with VCIND who received computerized cognitive training, with a focus on the underlying mechanisms and potential therapeutic strategies. METHODS: We prospectively collected 60 patients with VCIND who were randomly divided into the training group (N = 30) receiving computerized cognitive training and the control group (N = 30) receiving fixed cognitive training. Functional MRI scans and cognitive assessments were performed at baseline, at the 7-week training, and at the 6-month follow-up. Utilizing templates for ICNs, the study employed a linear mixed model to compare intra- and inter-network FC changes between the two groups. Pearson correlation was applied to calculate the relationship between FC and cognitive function. RESULTS: We found significantly decreased intra-network FC within the default mode network (DMN) following computerized cognitive training at Month 6 (p = 0.034), suggesting a potential loss of functional specialization. Computerized training led to increased functional coupling between the DMN and sensorimotor network (SMN) (p = 0.01) and between the language network (LN) and executive control network (ECN) at Month 6 (p < 0.001), indicating compensatory network adaptations in patients with VCIND. Notably, the intra-LN exhibited enhanced functional specialization after computerized cognitive training (p = 0.049), with significant FC increases among LN regions, which correlated with improvements in neuropsychological measures (p < 0.05), emphasizing the targeted impact of computerized cognitive training on language abilities. CONCLUSIONS: This study provides insights into neuroplasticity and adaptive changes resulting from cognitive training in patients with VCIND, with implications for potential therapeutic strategies.


Subject(s)
Brain , Cognitive Dysfunction , Magnetic Resonance Imaging , Nerve Net , Humans , Male , Female , Aged , Cognitive Dysfunction/therapy , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/rehabilitation , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Therapy, Computer-Assisted/methods , Prospective Studies , Cognitive Training
3.
Int Urol Nephrol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829465

ABSTRACT

PURPOSE: We performed the study to investigate the association between heart rate (HR) non-dipping pattern and target organ damage in patients with chronic kidney disease (CKD) and hypertension. METHODS: In this cross-sectional study, 447 patients with CKD and hypertension were enrolled. 24 h ambulatory blood pressure monitoring was conducted. Linear regression and logistic regression analysis were conducted to investigate the association between HR non-dipping pattern and target organ damage, including estimated glomerular filtration rate (eGFR), left ventricular mass index (LVMI), and left ventricular hypertrophy (LVH). RESULTS: Overall, 261 patients (58.4%) followed non-dipping patterns of HR. HR non-dipping pattern remained to be significantly associated with reduced eGFR (ß: -0.384; 95% CI: -0.719 to -0.050; p = 0.025) and the higher prevalence of CKD stages 4-5 (OR: 2.141; 95% CI: 1.153 to 3.977; p = 0.016). Meanwhile, HR non-dipping pattern was independently associated with LVMI (ß: 0.021; 95% CI: 0.000 to 0.041; p = 0.049) and LVH (OR: 1.78; 95% CI: 1.07 to 2.96; p = 0.027) after adjusting for confounding factors. CONCLUSIONS: HR non-dipping pattern was independently associated with impaired renal function and cardiac damage. Non-dipping HR deserves further attention and needs to be detected and treated during the management of CKD patients.

5.
Abdom Radiol (NY) ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806703

ABSTRACT

PURPOSE: To investigate the value of shear-wave elastography (SWE) in assessing the response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer. METHODS: In this study, 455 participants with locally advanced rectal cancer who underwent nCRT at our hospital between September 2021 and December 2022 were prospectively enrolled. The participants were randomly divided into training and test cohorts in a 3:2 ratio. Clinical baseline data, endorectal ultrasound examination data, and SWE measurements were collected for all participants. Logistic regression models were used to predict whether rectal cancer after nCRT had a low T staging (ypT 0-2 stage, Model A) and pathological complete response (pCR) (Model B). Paired Chi-square tests were used to compare the diagnostic performances of the radiologists to those of Models A and B. RESULTS: In total, 256 participants were included. The area under the receiver operating characteristic curve of Models A and B in the test cohort were 0.94 (0.87, 1.00) and 0.88 (0.80, 0.97), respectively. The optimal diagnostic thresholds for Models A and B were 14.9 kPa for peritumoral mesangial Emean and 15.2 kPa for tumor Emean, respectively. The diagnostic performance of the radiologists was significantly lower than that of Models A and B, respectively (p < 0.05). CONCLUSION: SWE can be used as a feasible method to evaluate the treatment response of nCRT for locally advanced rectal cancer.

7.
iScience ; 27(5): 109713, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38746668

ABSTRACT

This study systematically reviewed the application of large language models (LLMs) in medicine, analyzing 550 selected studies from a vast literature search. LLMs like ChatGPT transformed healthcare by enhancing diagnostics, medical writing, education, and project management. They assisted in drafting medical documents, creating training simulations, and streamlining research processes. Despite their growing utility in assisted diagnosis and improving doctor-patient communication, challenges persisted, including limitations in contextual understanding and the risk of over-reliance. The surge in LLM-related research indicated a focus on medical writing, diagnostics, and patient communication, but highlighted the need for careful integration, considering validation, ethical concerns, and the balance with traditional medical practice. Future research directions suggested a focus on multimodal LLMs, deeper algorithmic understanding, and ensuring responsible, effective use in healthcare.

8.
Inflammation ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38796804

ABSTRACT

Ultraviolet (UV) irradiation significantly contributes to photoaging. Ferroptosis, an iron-dependent cell death mode recently identified, plays a key role in UVB-induced skin photoaging. This study examines the functions and regulatory mechanisms of ferroptosis in this regard. Characterized by increased intracellular iron and reactive oxygen species (ROS), ferroptosis is associated with mitochondrial function and structure. Through RNA sequencing, we identified NADH: ubiquinone oxidoreductase subunit S4 (NDUFS4), a gene implicated in UVB-mediated photoaging, and explored its role in ferroptosis by NDUFS4 knockdown. In vitro, inhibiting NDUFS4 reduced ferroptosis, decreased ROS and matrix metallopeptidase 1 levels, and increased collagen type I alpha 1 chain, glutathione peroxidase 4 (GPX4), ferritin heavy chain 1, and solute carrier family 7 member 11 levels, suggesting a reinforced ferroptosis protective mechanism. Additionally, NDUFS4 regulates ferroptosis via the mitogen-activated protein kinase (MAPK) pathway, with its knockdown reducing p38 and ERK phosphorylation and elevating GPX4 levels, enhancing ferroptosis resistance. Animal experiments supported these findings, demonstrating that Ferrostatin-1, a ferroptosis inhibitor, significantly mitigated UVB-induced skin photoaging and related protein expression. This study uncovers NDUFS4's novel role in regulating ferroptosis and provides new insights into ferroptosis-mediated UVB-induced skin photoaging.

9.
Tuberculosis (Edinb) ; 147: 102521, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38801793

ABSTRACT

OBJECTIVE: To assess the validity of Xpert Tuberculosis Fingerstick score for monitoring treatment response and analyze factors influencing its performance. METHODS: 122 adults with pulmonary tuberculosis were recruited and stratified into three cohorts: Diabetic-drug-susceptible-TB (DM-TB), Non-diabetic-drug-susceptible-TB (NDM-TB) and Non-diabetic Multidrug-resistant TB (MDR-TB). Fingerstick blood specimens were tested at treatment initiation (M0) and the end of the first (M1), second (M2), and sixth month (M6) to generate a TB-score. RESULTS: The TB-score in all participants yielded an AUC of 0.707 (95% CI: 0.579-0.834) at M2 when its performance was evaluated against sputum culture conversion. In all non-diabetes patients, the AUC reached 0.88 (95% CI: 0.756-1.000) with an optimal cut-off value of 1.95 at which sensitivity was 90.0% (95% CI: 59.6-98.2%) and specificity was 81.3% (95% CI: 70.0-88.9%). The mean TB score was higher in patients with low bacterial loads (n = 31) than those with high bacterial loads (n = 91) at M0, M1, M2, and M6, and was higher in non-cavitary patients (n = 71) than those with cavitary lesions (n = 51) at M0, M1, and M2. CONCLUSION: Xpert TB-score shows promising predictive value for culture conversion in non-diabetic TB patients. Sputum bacterial load and lung cavitation status have an influence on the value of TB score.

10.
Water Res ; 257: 121739, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728778

ABSTRACT

The coupling between anammox and nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) has been considered a sustainable technology for nitrogen removal from sidestream wastewater and can be implemented in both membrane biofilm reactor (MBfR) and granular bioreactor. However, the potential influence of the accompanying hydrogen sulfide (H2S) in the anaerobic digestion (AD)-related methane-containing mixture on anammox/n-DAMO remains unknown. To fill this gap, this work first constructed a model incorporating the C/N/S-related bioprocesses and evaluated/calibrated/validated the model using experimental data. The model was then used to explore the impact of H2S on the MBfR and granular bioreactor designed to perform anammox/n-DAMO at practical levels (i.e., 0∼5% (v/v) and 0∼40 g/S m3, respectively). The simulation results indicated that H2S in inflow gas did not significantly affect the total nitrogen (TN) removal of the MBfR under all operational conditions studied in this work, thus lifting the concern about applying AD-produced biogas to power up anammox/n-DAMO in the MBfR. However, the presence of H2S in the influent would either compromise the treatment performance of the granular bioreactor at a relatively high influent NH4+-N/NO2--N ratio (e.g., >1.0) or lead to increased energy demand associated with TN removal at a relatively low influent NH4+-N/NO2--N ratio (e.g., <0.7). Such a negative effect of the influent H2S could not be attenuated by regulating the hydraulic residence time and should therefore be avoided when applying the granular bioreactor to perform anammox/n-DAMO in practice.


Subject(s)
Bioreactors , Hydrogen Sulfide , Methane , Nitrates , Nitrites , Oxidation-Reduction , Hydrogen Sulfide/metabolism , Anaerobiosis , Methane/metabolism , Nitrates/metabolism , Waste Disposal, Fluid/methods , Nitrogen/metabolism , Wastewater/chemistry
11.
J Affect Disord ; 358: 391-398, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38735577

ABSTRACT

BACKGROUND: Personality traits, especially neuroticism, can influence susceptibility to dementia. Social contact mitigates stress and risk of dementia, the extent to which social contact can mitigate excess risk associated with neuroticism remains unclear. We aim to investigate whether active social contact is associated with lower neuroticism-associated excess risk of dementia. METHODS: This prospective cohort study examined 393,939 UK Biobank participants (mean [SD] age: 56.4 [8.1] years; 53.7 % female) assessed from 2006 to 2010 and followed up until December 2022. Neuroticism was measured using the Revised Eysenck Personality Questionnaire. Social contact levels were assessed based on household size, contact with family or friends, and group participation. Dementia was determined using linked electronic health records. RESULTS: High neuroticism was associated with increased all-cause dementia risk and cause-specific dementia. Among high neuroticism participants, excess risk of all-cause dementia showed a stepwise decrease with increasing social contact (low: hazard ratios (HR) = 1.27, 95 % confidence interval (CI) = 1.15-1.40; intermediate: HR = 1.20, 95 % CI = 1.12-1.28; high: HR = 1.07, 95 % CI = 1.00-1.15). High social contact similarly decreased excess risk of cause-specific dementia, comparable to those with low neuroticism. LIMITATIONS: Neuroticism and social contact information relied on self-report questionnaires at baseline, with a potential temporal relationship between these factors. CONCLUSION: Active social contact is associated with a stepwise reduction in excess dementia risk and potentially eliminate excess risk of dementia with high neuroticism individuals, supporting social contact as a preventive strategy to attenuate excess risks of dementia from neuroticism personality trait.


Subject(s)
Dementia , Neuroticism , Humans , Female , Dementia/epidemiology , Dementia/psychology , Male , Prospective Studies , Middle Aged , Aged , Risk Factors , Social Interaction , United Kingdom/epidemiology , Adult
12.
Chem Sci ; 15(21): 8145-8155, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38817584

ABSTRACT

Electrocatalytic refinery from biomass-derived glycerol (GLY) to formic acid (FA), one of the most promising candidates for green H2 carriers, has driven widespread attention for its sustainability. Herein, we fabricated a series of monolithic Ni hydroxide-based electrocatalysts by a facile and in situ electrochemical method through the manipulation of local pH near the electrode. The as-synthesized Ni(OH)2@NF-1.0 affords a low working potential of 1.36 VRHE to achieve 100% GLY conversion, 98.5% FA yield, 96.1% faradaic efficiency and ∼0.13 A cm-2 of current density. Its high efficiency on a wide range of polyol substrates further underscores the promise of sustainable electro-refinery. Through a combinatory analysis via H2 temperature-programmed reduction, cyclic voltammetry and in situ Raman spectroscopy, the precise regulation of synthetic potential was discovered to be highly essential to controlling the content, phase composition and redox properties of Ni hydroxides, which significantly determine the catalytic performance. Additionally, the 'adsorption-activation' mode of ortho-di-hydroxyl groups during the C-C bond cleavage of polyols was proposed based on a series of probe reactions. This work illuminates an advanced path for designing non-noble-metal-based catalysts to facilitate electrochemical biomass valorization.

13.
Dev Biol ; 512: 57-69, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38750688

ABSTRACT

Understanding the developmental processes and signaling pathways involved in larval myogenesis and metamorphosis is crucial for comprehending the life history and adaptive strategies of marine organisms. In this study, we investigated the temporal and spatial patterns of myogenesis in the mussel Mytilus coruscus (Mc), focusing on the emergence and transformation of major muscle groups during different larval stages. We also explored the role of the Hedgehog (Hh) signaling pathway in regulating myogenesis and larval metamorphosis. The results revealed distinct developmental stages characterized by the emergence of specific muscular components, such as velum retractor muscles and anterior adductor muscles, in D-veliger and umbo larvae, which are responsible for the planktonic stage. In the pediveliger stage, posterior ventral, posterior adductor, and foot muscles appeared. After larval metamorphosis, the velum structure and its corresponding retractor muscles degenerate, indicating the transition from planktonic to benthic life. We observed a conserved pattern of larval musculature development and revealed a high degree of conservation across bivalve species, with comparable emergence times during myogenesis. Furthermore, exposure to the Hh signaling inhibitor cyclopamine impaired larval muscle development, reduced larval swimming activity, and inhibited larval metamorphosis in M. coruscus. Cyclopamine-mediated inhibition of Hh signaling led to reduced expression of four key genes within the Hh signaling pathway (McHh, McPtc, McSmo, and McGli) and the striated myosin heavy chain gene (McMHC). It is hypothesised that the abnormal larval muscle development in cyclopamine-treated groups may be an indirect effect due to disrupted McMHC expression. We provide evidence for the first time that cyclopamine treatment inhibited larval metamorphosis in bivalves, highlighting the potential involvement of Hh signaling in mediating larval muscle development and metamorphosis in M. coruscus. The present study provides insights into the dynamic nature of myogenesis and the regulatory role of the Hh signaling pathway during larval development and metamorphosis in M. coruscus. The results obtained in this study contribute to a better understanding of the evolutionary significance of Hh signaling in bivalves and shed light on the mechanisms underlying larval muscle development and metamorphosis in marine invertebrates.


Subject(s)
Gene Expression Regulation, Developmental , Hedgehog Proteins , Larva , Metamorphosis, Biological , Muscle Development , Mytilus , Signal Transduction , Animals , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Larva/growth & development , Larva/metabolism , Mytilus/growth & development , Mytilus/metabolism , Veratrum Alkaloids/pharmacology , Muscles/metabolism
14.
Front Pharmacol ; 15: 1395156, 2024.
Article in English | MEDLINE | ID: mdl-38720772

ABSTRACT

Approximately 80% of all malignant brain tumors are gliomas, which are primary brain tumors. The most prevalent subtype of glioma, glioblastoma multiforme (GBM), is also the most deadly. Chemotherapy, immunotherapy, surgery, and conventional pharmacotherapy are currently available therapeutic options for GBM; unfortunately, these approaches only prolong the patient's life by 5 years at most. Despite numerous intensive therapeutic options, GBM is considered incurable. Accumulating preclinical data indicate that overt antitumoral effects can be induced by pharmacologically activating endocannabinoid receptors on glioma cells by modifying important intracellular signaling cascades. The complex mechanism underlying the endocannabinoid receptor-evoked antitumoral activity in experimental models of glioma may inhibit the ability of cancer cells to invade, proliferate, and exhibit stem cell-like characteristics, along with altering other aspects of the complex tumor microenvironment. The exact biological function of the endocannabinoid system in the development and spread of gliomas, however, is remains unclear and appears to rely heavily on context. Previous studies have revealed that endocannabinoid receptors are present in the tumor microenvironment, suggesting that these receptors could be novel targets for the treatment of GBM. Additionally, endocannabinoids have demonstrated anticancer effects through signaling pathways linked to the classic features of cancer. Thus, the pharmacology of endocannabinoids in the glioblastoma microenvironment is the main topic of this review, which may promote the development of future GBM therapies.

15.
Am J Cancer Res ; 14(4): 1577-1593, 2024.
Article in English | MEDLINE | ID: mdl-38726270

ABSTRACT

Follicular lymphoma (FL), derived from germinal centre (GC) B cells, is a kind of systemic neoplasm. Even though FL is indolent, it remains an incurable haematology Neoplasm. Accumulating evidence has suggested that the circulating cytokine is associated with the development of FL, yet the causal relationship between FL and circulating cytokines remains undetermined. Therefore, we conducted a two-sample Mendelian randomization (MR) to confirm the causal link between FL and levels of circulating cytokines with the use of summary data on circulating cytokines and FL. All these data from genome-wide association study were derived from the Genome-wide pQTL mapping which contains 14,824 individuals. FL data were acquired exclusively from FinnGen, where 218,792 individuals (522 cases vs. 218,270 controls) were involved. Various statistical methods, including the inverse variance weighted method (IVW), weighted median (WME), simple model, weighted model (WM) and MR-Egger, were used to evaluate the potential causal connection between circulating cytokines and FL. Sensitivity analysis, which involves the examination of the heterogeneity, pleiotropy, and leave-one-out method, was also performed to ensure more trustworthy results. A bidirectional MR test was performed to evaluate the direction of causal association between circulating cytokines and FL. Combining all the steps of MR analysis, we revealed four causal cytokines: C-X-C motif chemokine ligand 5 (CXCL5), interleukin-15 receptor A (IL15RA), interleukin-20 (IL20), and neurotrophin-3 (NT-3). The risk of FL may be inversely linked to CXCL5 (OR=0.73, CI: 0.545-0.979, P=0.036), IL-15RA (OR=0.669, CI: 0.451-0.993, P=0.046), and IL-20 (OR=0.565, CI: 0.325-0.981, P=0.043) but positively linked to NT-3 (OR=1.872, CI: 1.063-3.297, P=0.03). In addition, in our study, no causal effect of FL on cytokines was demonstrated and no significant heterogeneity and pleiotropy were found. Our research revealed the causal relationship between cytokines and FL, along with both the anti-protective effect of CXCL5, IL-15RA, and IL-20 and the protective effect of neurotrophin-3 on FL. These findings aim to provide new clues regarding the pathogenesis of FL and to extend the potential of circulating cytokines to therapeutic interventions.

18.
Medicine (Baltimore) ; 103(19): e38113, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728495

ABSTRACT

To explore the potential mechanism in Cuscuta sinensis on diarrhea-type irritable bowel syndrome using network pharmacology and molecular docking techniques. First, the active components and related targets of Cuscuta were found setting oral utilization >30% and drug-like properties greater than or equal to 0.18 as filter information from TCMSP database. The targets of diarrheal irritable bowel syndrome were compiled by searching DrugBank, GeneCards, OMIM, PharmGkb, and TTD databases. The intersections of drugs and targets related to the disease were taken for gene ontology enrichment and Kyoto encyclopedia of genes and genomes enrichment analyses, to elucidate the potential molecular mechanisms and pathway information of Cuscuta sinensis for the treatment of diarrheal irritable bowel syndrome. The protein-protein interaction network was constructed by using the STRING database and visualized with Cytoscape_v3.10.0 software to find the protein-protein interaction network core At last, molecular docking was performed to validate the combination of active compounds with the core target. The target information of Cuscuta and diarrhea-type irritable bowel syndrome was compiled, which can be resulted in 11 active compounds such as quercetin, kaempferol, isorhamnetin, ß-sitosterol, and another 17 core targets such as TP53, IL6, AKT1, IL1B, TNF, EGFR, etc, whose Kyoto encyclopedia of genes and genomes was enriched in the pathways of lipids and atherosclerosis, chemical carcinogenesis-receptor activation, PI3K-Akt signaling pathway, and fluid shear stress and atherosclerosis, etc. Docking demonstrated that the core targets and the active compounds were able to be better combined. Cuscuta chinensis may exert preventive effects on diarrhea-type irritable bowel syndrome by reducing intestinal inflammation, protecting intestinal mucosa, and playing an important role in antioxidant response through multi-targets and multi-pathways.


Subject(s)
Cuscuta , Diarrhea , Irritable Bowel Syndrome , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Irritable Bowel Syndrome/drug therapy , Humans , Diarrhea/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
19.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732614

ABSTRACT

The incidence of ulcerative colitis (UC) is increasing annually, and UC has a serious impact on patients' lives. Polysaccharides have gained attention as potential drug candidates for treating ulcerative colitis (UC) in recent years. Huaier (Trametes robiniophila Murr) is a fungus that has been used clinically for more than 1000 years, and its bioactive polysaccharide components have been reported to possess immunomodulatory effects, antitumour potential, and renoprotective effects. In this study, we aimed to examine the protective effects and mechanisms of Huaier polysaccharide (HP) against UC. Based on the H2O2-induced oxidative stress model in HT-29 cells and the dextran sulphate sodium salt (DSS)-induced UC model, we demonstrated that Huaier polysaccharides significantly alleviated DSS-induced colitis (weight loss, elevated disease activity index (DAI) scores, and colonic shortening). In addition, HP inhibited oxidative stress and inflammation and alleviated DSS-induced intestinal barrier damage. It also significantly promoted the expression of the mucin Muc2. Furthermore, HP reduced the abundance of harmful bacteria Escherichia-Shigella and promoted the abundance of beneficial bacteria Muribaculaceae_unclassified, Anaerotruncus, and Ruminococcaceae_unclassified to regulate the intestinal flora disturbance caused by DSS. Nontargeted metabolomics revealed that HP intervention would modulate metabolism by promoting levels of 3-hydroxybutyric acid, phosphatidylcholine (PC), and phosphatidylethanolamine (PE). These results demonstrated that HP had the ability to mitigate DSS-induced UC by suppressing oxidative stress and inflammation, maintaining the intestinal barrier, and modulating the intestinal flora. These findings will expand our knowledge of how HP functions and offer a theoretical foundation for using HP as a potential prebiotic to prevent UC.


Subject(s)
Dextran Sulfate , Gastrointestinal Microbiome , Oxidative Stress , Polysaccharides , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , Animals , Humans , Polysaccharides/pharmacology , Mice , Male , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/microbiology , Disease Models, Animal , Inflammation/drug therapy , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , HT29 Cells , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...