Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 185: 114288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658074

ABSTRACT

In this paper, the effect of monosodium glutamate (MSG) on coconut protein (CP) solubility, surface hydrophobicity, emulsification activity, ultraviolet spectroscopy and fluorescence spectroscopy was investigated. Meanwhile, the changes in the in vitro digestive properties of coconut milk were also further analyzed. MSG treatment altered the solubility and surface hydrophobicity of CP, thereby improving protein digestibility. Molecular docking showed that CP bound to pepsin and trypsin mainly through hydrogen bonds and salt bridges. And MSG increased the cleavable sites of pepsin and trypsin on CP, thus further improving the protein digestibility. In addition, MSG increased the Na+ concentration in coconut milk, promoted flocculation and aggregation between coconut milk droplets, which prevented the binding of lipase and oil droplets and inhibited lipid digestion. These findings may provide new ideas and insights to improve the digestive properties of plant-based milk.


Subject(s)
Cocos , Digestion , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Plant Proteins , Sodium Glutamate , Solubility , Sodium Glutamate/chemistry , Digestion/drug effects , Cocos/chemistry , Plant Proteins/chemistry , Trypsin/metabolism , Trypsin/chemistry , Pepsin A/metabolism , Pepsin A/chemistry
2.
Int J Biol Macromol ; 252: 126139, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37543272

ABSTRACT

In this study, monosodium glutamate (MSG) was used to improve the viscosity of coconut milk and the underlying mechanism was explored by investigating the changes in structures of coconut milk protein and physicochemical properties of coconut milk. Firstly, the effect of MSG on the properties of coconut milk was studied. The results showed that MSG increased the pH and zeta potential, reduced the particle size, thus enhancing the droplet interaction and increasing the viscosity of coconut milk. Subsequently, the effects of MSG on the structure and properties of coconut proteins (CP) were investigated. FTIR spectroscopy and circular dichroism spectroscopy showed that MSG was able to change the secondary structure of CP. The results of SDS-PAGE showed that MSG was able to bind to CP to form a larger molecular weight protein, thus improving the viscosity of coconut milk. Moreover, MSG was also able to increase the water-binding capacity of CP. In addition, molecular docking and driving force analysis revealed that hydrogen bonds, electrostatic forces, disulfide bonds, and hydrophobic interactions are the main interactions between MSG and CP. Studying the effect of MSG on the viscosity of coconut milk provides theoretical support to improve the viscosity of other plant protein emulsions.


Subject(s)
Cocos , Sodium Glutamate , Viscosity , Emulsions/chemistry , Cocos/chemistry , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...