Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 22(4): 1287-1297, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36921116

ABSTRACT

Ulcerative colitis (UC) is a systematic chronic disease characterized by insufficient intestinal absorption, and mesalazine is a common medical treatment. In the present study, 20 normal healthy controls (NC group), 10 unmedicated UC patients (UC group), and 20 mesalazine-responsive and 20 mesalazine-nonresponsive UC patients were recruited. A total of 42 serum BA metabolites, including 8 primary bile acids and 34 secondary bile acids (SBAs), were quantitatively measured. Compared with the NC group, serum SBAs in the UC patients were significantly lower but increased after mesalazine therapy. Differences in the serum TDCA, DCA, GDCA-3S, 12-keto LCA, and GCDCA-3S metabolites were found between the UC and NC groups, with AUC values of 0.777, 0.800, 0.815, 0.775, and 0.740, respectively. Furthermore, we identified 12-keto LCA as a specific BA marker of UC and BA biomarkers of mesalazine responsiveness. It was concluded that serum SBAs were decreased in UC patients, and TDCA, DCA, GDCA-3S, 12-keto LCA, and GCDCA-3S might aid in the diagnosis of UC. The abundance of SBAs increased after the mesalazine therapy, and serum 12-keto LCA was identified as an alternative invasive biomarker associated with UC diagnosis and therapeutic response, thereby providing a new approach for the prediction of response to mesalazine therapy in UC patients.


Subject(s)
Colitis, Ulcerative , Mesalamine , Humans , Mesalamine/therapeutic use , Mesalamine/adverse effects , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/drug therapy , Bile Acids and Salts , Biomarkers , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
2.
Biomed Pharmacother ; 158: 114133, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36521243

ABSTRACT

Endoplasmic reticulum stress (ERS)-related autophagy is involved in the occurrence and development of ulcerative colitis (UC). Therefore, regulating ERS-related autophagy is a potential therapeutic target for the treatment of UC. Jianpi-Qingchang (JPQC) decoction, consisting of nine Chinese herbal medicines, is used to treat patients with UC. However, its mechanism of action has not been completely elucidated. Here, we aimed to reveal the therapeutic effects and mechanisms of JPQC in UC. We established a colitis model using dextran sulfate sodium (DSS) and an ERS model using thapsigargin (Tg) and administered JPQC. We systematically examined ERS-related autophagy associated protein expression, inflammatory cytokines, apoptotic cells, and autophagic flux. Moreover, the cellular ultrastructure was observed via transmission electron microscopy (TEM). We found that JPQC reduced disease activity index (DAI) scores, counteracted colonic tissue damage, decreased the number of autophagosomes, inhibited proinflammatory cytokines, enhanced anti-inflammatory cytokines, and dampened ERS-related autophagy associated protein gene expression.


Subject(s)
Colitis, Ulcerative , Colitis , Humans , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis/drug therapy , Colon , Epithelial Cells , Cytokines/metabolism , Autophagy , Endoplasmic Reticulum Stress , Dextran Sulfate/toxicity , Disease Models, Animal
3.
Biomed Pharmacother ; 153: 113367, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35780619

ABSTRACT

BACKGROUND: As a primarily N6-methyladenosine methyltransferase, methyltransferase 3 (METTL3) plays a crucial role in nonalcoholic fatty liver disease. However, its regulatory mechanism in steatosis remains unknown. METHODS: Alpha mouse liver 12 (AML12) cells were induced by free fatty acids (FFA). Triglycerides, lipid droplet assay, and Oil Red O staining were performed to evaluate steatosis. The expression of METTL3 and cytochrome P450 family 4 subfamily f polypeptide 40 (CYP4F40) was measured using Western blotting, real-time quantitative polymerase chain reaction, and dual-luciferase reporter assay. Triglycerides, total cholesterol, almandine aminotransferase, and aspartate aminotransferase were assayed after cinnamaldehyde treatment. Transcriptomics and metabolomics were performed to determine how METTL3 and cinnamaldehyde regulate steatosis. RESULTS: METTL3 protein level was reduced in FFA-induced steatosis in AML12 cells, and METTL3 knockdown aggravated the steatosis. Cinnamaldehyde alleviated steatosis by increasing METTL3 expression. A combined transcriptomics and metabolomics analysis revealed that METTL3 knockdown reduced CYP4F40 expression and reduced the level of capric acid, gamma-linolenic acid, arachidonic acid, and docosapentaenoic acid. Cinnamaldehyde promoted CYP4F40 expression by increasing METTL3 and increased the levels of capric acid, gamma-linolenic acid, arachidonic acid, and docosapentaenoic acid. Finally, the beneficial effects of cinnamaldehyde on steatosis were reversed after METTL3 knockdown. CONCLUSIONS: METTL3 knockdown aggravated steatosis in AML12 cells through CYP4F40-mediated fatty acid metabolism, and cinnamaldehyde alleviated steatosis via the METTL3-CYP4F40 pathway.


Subject(s)
Methyltransferases , Non-alcoholic Fatty Liver Disease , Acrolein/analogs & derivatives , Animals , Arachidonic Acids , Fatty Acids, Nonesterified , Mice , Triglycerides , gamma-Linolenic Acid
4.
Article in English | MEDLINE | ID: mdl-35186102

ABSTRACT

BACKGROUND: Excessive endoplasmic reticulum (ER) stress in intestinal epithelial cells (IEC) may lead to impaired intestinal mucosal barrier function and then participate in the pathogenesis of ulcerative colitis (UC). Jianpi Qingchang decoction (JPQCD) has been shown to have protective effects on UC. However, further studies are needed to determine whether JPQCD regulates PERK/eIF2α/ATF4/CHOP pathways to play a role in treating UC. METHODS: IL-10 -/- mice were randomly assigned into five groups: control, model, low-dose JPQCD (JPQCD L), middle-dose JPQCD (JPQCD M), and high-dose JPQCD (JPQCD H). All groups except for the control group were given model feed containing 200 ppm piroxicam for 10 d to induce colitis. As a comparison, we used wild-type mice that were the progeny of IL-10 +/- matings, bred in the same facility. The control group and wild-type mice were fed with common feed. At the same time, mice in each group were given corresponding drugs by gavage for 14 d. The disease activity index of mice in each group was evaluated daily. Colon tissues of mice were collected, colon length was measured, and pathological changes and ultrastructure of colon epithelial cells were observed. The effects of JPQCD on the PERK/eIF2α/ATF4/CHOP pathways were evaluated by western blotting and reverse transcription-polymerase chain reaction (RT-PCR). The expression of CHOP in colon tissue was detected by tissue immunofluorescence assay. The expression of NF-κB, p-NF-κB p65 protein was analyzed by western blotting; the level of IL-17 in colon tissue was detected by enzyme-linked immunosorbent assay (ELISA) and verified by examining NF-κB and IL-17 mRNA levels by RT-PCR. RESULTS: Compared with the control group, the model group showed significant colitis symptoms and severe colonic tissue damage. The results showed that JPQCD significantly reduced body weight loss, ameliorated disease activity index, and restored colon length in IL-10 -/- mice with piroxicam-induced colitis. Western blotting and RT-PCR showed that the PERK/eIF2α/ATF4/CHOP pathway was activated in colon tissue of model mice, suggesting that the pathway is involved in the pathogenesis of ulcerative colitis (UC) and could become a potential therapeutic target. The JPQCD treatment inhibited the activation of the PERK/eIF2α/ATF4/CHOP pathway, alleviated the ER stress, and played a role in preventing and treating UC. In addition, JPQCD can also downregulate the protein of NF-κB, p-NF-κB p65, downregulate the mRNA expression of NF-κB, and reduce the content of IL-17 and its mRNA expression in colon tissues. CONCLUSION: JPQCD may play a protective role in UC by regulating the PERK/eIF2α/ATF4/CHOP signaling pathway and relieving endoplasmic reticulum stress.

5.
Mol Nutr Food Res ; 66(5): e2100791, 2022 03.
Article in English | MEDLINE | ID: mdl-34968000

ABSTRACT

SCOPE: To investigate the role of endoplasmic reticulum stress (ERS)-induced autophagy in inflammatory bowel disease (IBD) and the intervention mechanism of Portulaca oleracea L. (POL) extract, a medicinal herb with anti-inflammatory, antioxidant, immune-regulating, and antitumor properties, in vitro and in vivo. METHODS AND RESULTS: An IL-10-deficient mouse model is used for in vivo experiments; a thapsigargin (Tg)-stimulated ERS model of human colonic mucosal epithelial cells (HIECs) is used for in vitro experiments. The levels of ERS-autophagy-related proteins are examined by immunofluorescence and Western blot. Cellular ultrastructure is assessed with transmission electron microscopy. POL extract promotes a healing effect on colitis by regulating ERS-autophagy through the protein kinase R-like endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor 2α (eIF2α)/Beclin1-microtubule-associated protein light chain 3II (LC3II) pathway. CONCLUSION: Overall, the results of this study further confirm the anti-inflammatory mechanism and protective effect of POL extract and provide a new research avenue for the clinical treatment of IBD.


Subject(s)
Inflammatory Bowel Diseases , Portulaca , Animals , Anti-Inflammatory Agents/pharmacology , Apoptosis , Autophagy , Endoplasmic Reticulum Stress , Inflammation/drug therapy , Inflammation/metabolism , Inflammatory Bowel Diseases/drug therapy , Mice , Plant Extracts/pharmacology
6.
Front Pharmacol ; 12: 697360, 2021.
Article in English | MEDLINE | ID: mdl-34588980

ABSTRACT

Ulcerative colitis (UC) is a chronic nonspecific inflammation that mainly affects the mucosa and submucosa of the rectum and colon. Numerous studies have shown that endoplasmic reticulum stress (ERS)-induced autophagy plays a vital role in the pathogenesis of UC. ERS is the imbalance of internal balance caused by misfolded or unfolded proteins accumulated in the endoplasmic reticulum (ER).Excessive ERS triggers the unfolded protein response (UPR), an increase in inositol-requiring enzyme 1, and a Ca2+ overload, which activates the autophagy pathway. Autophagy is an evolutionarily conserved method of cellular self-degradation. Dysregulated autophagy causes inflammation, disruption of the intestinal barrier, and imbalance of intestinal homeostasis, therefore increasing the risk of colonic diseases. This review summarizes the pathogenesis of ERS, UPR, and ERS-related autophagy in UC, providing potential new targets and more effective treatment options for UC.

7.
Clin Transl Med ; 10(3): e125, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32628818

ABSTRACT

BACKGROUND: As a new epigenetic biomarker, 5-hydroxymethylcytosine (5hmC) is broadly involved in various diseases including cancers. However, the function and diagnostic performance of 5hmC in colorectal cancer (CRC) remain unclear. RESULTS: High-throughput sequencing was used to profile 5hmC levels in adjacent normal colon, advanced adenomas, and CRC. The expression and 5hmC levels in zw10 kinetochore protein (ZW10) were significantly increased in the tissues and blood samples for patients with advanced adenoma and CRC, and were much higher in the early stages of CRC (I and II). The receiver operating characteristic analysis had potential diagnostic value for CRC. The area under the curve (AUC) of ZW10 5hmC levels in tissue samples of CRC was 0.901. In blood samples, the AUC was 0.748 for CRC. In addition, the ZW10 5hmC level had much higher diagnostic performance in early stages of CRC (AUC = 0.857) than it did in advanced stages (AUC = 0.594). Compared with FHC cell, ZW10 expression in HT29 cell was significantly increased. The ZW10 knockdown could inhibit cell proliferation and the ZW10 overexpression could promote cell proliferation in HT-29 cell. Furthermore, ZW10 knockdown inhibited AKT and mTOR phosphorylation, and ZW10 overexpression promoted AKT and mTOR phosphorylation. CONCLUSIONS: The ZW10 5hmC level may serve as an effective epigenetic biomarker for minimally invasive screening and diagnosis of CRC, and it has higher diagnostic performance in early stages of CRC than it does in advanced stages. In addition, ZW10 could regulate CRC progression through the AKT-mTOR signaling.

8.
Front Pharmacol ; 11: 620724, 2020.
Article in English | MEDLINE | ID: mdl-33628183

ABSTRACT

Mesalamine has been well used in the improvement of ulcerative colitis (UC) in clinics, however, the underlying mechanisms were not well illustrated. To explore its efficacy from the perspective of gut microbiota and related metabolites, we employed 16S rRNA sequencing and metabolomics approaches in stool samples across 14 normal healthy controls (NC group), 10 treatment-naïve UC patients (UC group) and 14 UC patients responded to mesalamine treatment (mesalamine group). We noted that the gut microbiota diversity and community composition were remarkably perturbed in UC group and partially restored by mesalamine treatment. The relative abundance of 192 taxa in genus level were significantly changed in UC group, and 168 genera were significantly altered after mesalamine intervention. Meanwhile, a total of 127 metabolites were significantly changed in UC group and 129 metabolites were significantly altered after mesalamine treatment. Importantly, we observed that many candidates including 49 genera (such as Escherichia-shigella, Enterococcus and Butyricicoccus) and 102 metatoblites (such as isoleucine, cholic acid and deoxycholic acid) were reversed by mesalamine. Spearman correlation analysis revealed that most of the candidates were significantly correlated with Mayo score of UC, and the relative abundance of specific genera were significant correlated with the perturbation of metabolites. Pathway analysis demonstrated that genera and metabolites candidates were enriched in many similar molecular pathways such as amino acid metabolism and secondary metabolites biosynthesis. Importantly, ROC curve analysis identified a gut microbiota signature composed of five genera including Escherichia-Shigella, Streptococcus, Megamonas, Prevotella_9 and [Eubacterium] _coprostanoligenes _group which might be used to distinguish UC group from both NC and mesalamine group. In all, our results suggested that mesalamine might exert a beneficial role in UC by modulating gut microbiota signature with correlated metabolites in different pathways, which may provide a basis for developing novel candidate biomarkers and therapeutic targets of UC.

SELECTION OF CITATIONS
SEARCH DETAIL
...