Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 940: 173513, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38810756

ABSTRACT

Effective utilization of organic resources to activate residual phosphorus (P) in soil and enhance its availability is crucial for mitigating P resource scarcity and assessing the sustainable use of P in agricultural practices. However, the mechanisms through which organic resources affect soil P conversion via microorganisms and functional genes remain unknown, particularly in long-term organic-inorganic agricultural systems. In this study, we examined the impact of combined organic-inorganic fertilizer application on P availability, carbon (C) and P cycling genes, and microbial communities (bacterial and fungal) in reddish paddy soil based on a 42-year field experiment. The results indicated that long-term straw returning and pig manure application significantly augmented soil organic carbon (SOC), Olsen-P, microbial biomass carbon (MBC), microbial biomass phosphorus (MBP), enzyme-P, and CaCl2-P levels in paddy soils. Furthermore, these practices increased the abundance of soil C degradation genes, reduced the abundance of soil P cycling genes, and altered microbial community structure and network complexity. Notably, Module #3 ecological clusters in the fungal ecological co-occurrence network were significantly correlated with P cycling genes. Finally, our study demonstrated that long-term straw returning and pig manure application in paddy fields facilitated two robust and contrasting predictive relationships between C degradation (negative relationship) and P cycling (positive relationship) genes, respectively, and enzyme-P and HCl-P changes to improve soil P availability. This study can enhance our understanding of the role of soil microbial communities and functional genes in mediating P transformation to decipher the enhancement in P application efficiency driven by organic resources in reddish paddy soils.


Subject(s)
Agriculture , Manure , Phosphorus , Soil Microbiology , Soil , Phosphorus/analysis , China , Soil/chemistry , Animals , Agriculture/methods , Swine , Fertilizers , Microbiota , Oryza , Carbon/analysis
2.
Sci Total Environ ; 935: 173306, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38777052

ABSTRACT

Excessive heavy metals in soils can threaten food security and soil health. New practical technology is urgently needed to remediate cadmium (Cd) contaminated paddies in many parts of the world. Chinese milk vetch (M), rice straw (R), and soil amendments can reduce Cd activity in soil; however, the mechanism underlying this reduction is not well understood. This study explored the impact of co-incorporation of milk vetch, rice straw, and either lime (L), sesbania biochar (B), or sepiolite on soil Cd bioavailability through field experiments. The results indicated that the rice grain Cd concentrations in soil treated with milk vetch + rice straw + fertilizer (MRF, 16.6 %), milk vetch + rice straw + fertilizer + sesbania biochar (MRFB, 50.1 %), and milk vetch + rice straw + fertilizer + lime (MRFL, 48.3 %) were significantly lower than those in soil treated with fertilizer (F). The acid-soluble Cd concentrations influenced rice grain Cd uptake and were 33.9 % and 47.5 % lower for the MRFB and MRFL treatments, respectively, than for F alone. A decrease in acid-soluble Cd (AciCd) was accompanied by a decrease in Eh and increases in pH, Fe2+, cation exchange capacity, and dissolved organic carbon. The MRFB treatment promoted iron plaque (IP) formation on the rice root surface. The relative abundances of Desulfobacterota and Verrucomicrobiota were higher for the MRFB treatment than for the other treatments. A partial least squares path model confirmed that Aci-Cd and low-crystalline IP (IP-Feh) influenced the rice grain Cd concentration.


Subject(s)
Agriculture , Cadmium , Fertilizers , Oryza , Soil Pollutants , Soil , Soil Pollutants/analysis , Cadmium/analysis , Soil/chemistry , Agriculture/methods , Soil Microbiology , Biological Availability , Environmental Restoration and Remediation/methods , Oxides , Charcoal
SELECTION OF CITATIONS
SEARCH DETAIL
...