Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmacol Res ; 164: 105382, 2021 02.
Article in English | MEDLINE | ID: mdl-33348024

ABSTRACT

The CYP3A5 gene polymorphism accounts for the majority of inter-individual variability in tacrolimus pharmacokinetics. We found that the basal expression of CYP3A5 in donor grafts also played a significant role in tacrolimus metabolism under the same genetic conditions after pediatric liver transplantation. Thus, we hypothesized that some potential epigenetic factors could affect CYP3A5 expression and contributed to the variability. We used a high-throughput functional screening for miRNAs to identify miRNAs that had the most abundant expression in normal human liver and could regulate tacrolimus metabolism in HepaRG cells and HepLPCs. Four of these miRNAs (miR-29a-3p, miR-99a-5p, miR-532-5p, and miR-26-5p) were selected for testing. We found that these miRNAs inhibited tacrolimus metabolism that was dependent on CYP3A5. Putative miRNAs targeting key drug-metabolizing enzymes and transporters (DMETs) were selected using an in silico prediction algorithm. Luciferase reporter assays and functional studies showed that miR-26b-5p inhibited tacrolimus metabolism by directly regulating CYP3A5, while miR-29a-5p, miR-99a-5p, and miR-532-5p targeted HNF4α, NR1I3, and NR1I2, respectively, in turn regulating the downstream expression of CYP3A5; the corresponding target gene siRNAs markedly abolished the effects caused by miRNA inhibitors. Also, the expression of miR-29a-3p, miR-99a-5p, miR-532-5p, and miR-26b-5p in donor grafts were negatively correlated with tacrolimus C/D following pediatric liver transplantation. Taken together, our findings identify these miRNAs as novel regulators of tacrolimus metabolism.


Subject(s)
Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Immunosuppressive Agents/pharmacokinetics , Liver Transplantation , Liver/enzymology , MicroRNAs , Tacrolimus/pharmacokinetics , Transplants/enzymology , Adult , Cell Line , Female , Humans , Infant , Liver/metabolism , Male , Transplants/metabolism , Young Adult
2.
Mol Cell Proteomics ; 18(9): 1851-1863, 2019 09.
Article in English | MEDLINE | ID: mdl-31308251

ABSTRACT

Systemic lupus erythematosus (SLE) is one of the most serious autoimmune diseases, characterized by highly diverse clinical manifestations. A biomarker is still needed for accurate diagnostics. SLE serum autoantibodies were discovered and validated using serum samples from independent sample cohorts encompassing 306 participants divided into three groups, i.e. healthy, SLE patients, and other autoimmune-related diseases. To discover biomarkers for SLE, a phage displayed random peptide library (Ph.D. 12) and deep sequencing were applied to screen specific autoantibodies in a total of 100 serum samples from 50 SLE patients and 50 healthy controls. A statistical analysis protocol was set up for the identification of peptides as potential biomarkers. For validation, 10 peptides were analyzed using enzyme-linked immunosorbent assays (ELISA). As a result, four peptides (SLE2018Val001, SLE2018Val002, SLE2018Val006, and SLE2018Val008) were discovered with high diagnostic power to differentiate SLE patients from healthy controls. Among them, two peptides, i.e. SLE2018Val001 and SLE2018Val002, were confirmed between SLE with other autoimmune patients. The procedure we established could be easily adopted for the identification of autoantibodies as biomarkers for many other diseases.


Subject(s)
Lupus Erythematosus, Systemic/blood , Peptide Library , Peptides/blood , Adult , Area Under Curve , Autoimmune Diseases/blood , Biomarkers/blood , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Peptides/genetics , Reproducibility of Results
3.
J Dig Dis ; 20(6): 308-317, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30953418

ABSTRACT

OBJECTIVE: To explore the expression profile and role of hepatic long non-coding RNA (lncRNA) in acetaminophen-induced liver injury mouse model by analyzing lncRNA-mRNA co-expression. METHODS: Serum aminotransferase, liver pathology and inflammatory cells were analyzed in mice model at different time points after treated with acetaminophen 300 mg/kg. High-throughput RNA sequencing was performed to investigate hepatic expression profiles of messenger RNA (mRNA) and lncRNA. The relationship between the lncRNA and mRNA was delineated by the co-expression network using Cytoscape software. Differential mRNAs co-expressed with lncRNAs were analyzed using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment. Differential mRNAs and lncRNAs were selected for quantitative reverse transcription polymerase chain reaction validation, and the conservation of lncRNA between human and mouse was analyzed. RESULTS: Liver injury was more severe at 24 hours than at 6 hours. There was a substantial infiltration of monocytes instead of neutrophil and Kupffer cells at 24 hours compared with 6 hours. The mRNAs co-expressed with the differential lncRNAs at 24 vs 6 hours were mainly enriched in protein processing in endoplasmic reticulum, MAPK and PPAR signaling pathways. The co-expression network delineated with four lncRNAs and 94 mRNAs presented the core position of lncRNA in the network. A conservation analysis indicated that four differential mouse lncRNAs (NONMMUT023651.2, NONMMUT029382.2, NONMMUT029383.2 and NONMMUT102053.1) could all be mapped to the relevant human lncRNAs. CONCLUSION: Four lncRNAs may play regulatory roles through metabolic and apoptosis-related pathways during hepatic homeostasis maintenance and repair progress.


Subject(s)
Acetaminophen/adverse effects , Analgesics, Non-Narcotic/adverse effects , Chemical and Drug Induced Liver Injury, Chronic/genetics , RNA, Long Noncoding/metabolism , Animals , Apoptosis/genetics , Gene Expression Profiling , Gene Ontology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Signal Transduction/genetics
4.
Am J Cancer Res ; 5(5): 1775-85, 2015.
Article in English | MEDLINE | ID: mdl-26175945

ABSTRACT

We sought to identify microRNAs that exhibit altered expression in laryngeal squamous cell carcinoma (SCC) and to determine whether microRNA expression is predictive of disease. This study was divided into three steps: (1) The expression of six miRNAs, such as up-regulated miR-223, miR-142-3p, miR-21, miR-16, miR-23a and down-regulated miR-375, was evaluated using total RNA isolated from freshly-frozen primary tumors and non-cancerous laryngeal squamous epithelial tissues and analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). (2) We also investigated the mRNA expression levels of processing elements (RNASEN, DGCR8, and DICER1) that participate in miRNA-biogenesis pathway. (3) We analyzed the relationships between the expression levels of these miRNAs and the clinicopathologic parameters of laryngeal SCC patients. In this study, we found that: (1) A marked difference in the microRNA expression pattern was observed between tumors and non-cancerous tissue. With regard to miRNA-processing elements, the expression level of RNASEN was higher in laryngeal SCC than in normal epithelium (P<0.01). (2) The miR-21/miR-375 expression ratio was highly sensitive and specific for disease prediction. Kaplan-Meier analysis revealed a significant association between high expression of miR-21/miR-375 in cancerous tissue and a worse prognosis (p=0.032). (3) Furthermore, the expression ratio of miR-21/mir-375 in patients with stage (III-IV) tumors was significantly higher than that in those with stage (I-II) tumors (p=0.006). These data suggest that the pattern of microRNA expression in primary laryngeal SCC tissues is exhibiting strong predictive potential.

5.
Am J Cancer Res ; 5(1): 278-88, 2015.
Article in English | MEDLINE | ID: mdl-25628937

ABSTRACT

To determine the role of JAK-2/STAT-3 signaling pathway in invasion and vasculogenic mimicry of laryngeal squamous cell carcinoma. HEp-2 cells were treated with 1 or 10 µmol/L curcumin and AG490 (the inhibitor of JAK-2) for 48 h, the invasion and vasculogenic mimicry of tumor cells were tested with Transwell chamber test and tube formation experiment. RT-PCR was used to measure the expression of MMP-2 and VEGF. Western blot assay was employed to determine the expression of JAK-2, STAT3, p-STAT3, MMP-2 and VEGF. Compared to control group,there were less tumor cells permeating membrane and less formed tubes after curcumin or AG490 treatment, RT-PCR showed that the expression of MMP-2 and VEGF at mRNA level were decreased (P < 0.01). Western blotting indicated that the expression of JAK-2, p-STAT3, MMP-2 and VEGF at protein levels were decreased (P < 0.01), while that of STAT-3 protein had no difference among each group (P > 0.05). Immunofluorescence staining demonstrated that the expression of eNOS was down-regulated (P < 0.01). Curcumin and AG490 significantly inhibits invasion and vasculogenic mimicry of laryngeal squamous cell carcinoma in vitro, and JAK-2/STAT-3 signaling pathway promotes above processes.

6.
Am J Transl Res ; 6(5): 604-13, 2014.
Article in English | MEDLINE | ID: mdl-25360224

ABSTRACT

The dismal outcome of laryngeal squamous cell carcinoma (SCC) patients highlights the need for novel prognostic biomarkers. The involvement of microRNAs in cancer and their potential as biomarkers of diagnosis and prognosis are becoming increasingly appreciated. We sought to identify microRNAs that exhibit altered expression in laryngeal SCC and to determine whether microRNA (miRNA) expression is predictive of disease progression and/or patient survival. The expression of two miRNAs, miR-21 and miR-375, was evaluated using total RNA isolated from freshly-frozen primary tumors and non-cancerous laryngeal squamous epithelial tissues and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. We further analyzed the association between the expression of miRNAs and the clinicopathological features. A marked difference in the microRNA expression pattern was observed between tumors and non-cancerous tissue. MiR-21 and miR-375 were expressed at higher and lower levels, respectively, in the laryngeal SCC samples, compared to the normal samples (p < 0.01 and p < 0.001, respectively). There was no correlation between characteristics such as age, sex, clinical stage, and alcohol use, and the expression level of mir-21. The relative expression of mir-375 in laryngeal SCC was shown to be associated with localization of the tumor in these patients (p = 0.037) and with alcohol use (p < 0.05). Patients with high miR-21 or low miR-375 expression in tumor tissues had poorer prognoses compared to patients with lower miR-21 or higher miR-375 expression. Furthermore, the miR-21/miR-375 expression ratio was highly sensitive (0.94) and specific (0.94) for disease prediction. These data suggest that the pattern of microRNA expression in primary laryngeal SCC tissues is reflective of the disease status and that miR-21 and miR-375 expression levels, in particular, may serve as potential biomarkers with applications in the clinical setting.

SELECTION OF CITATIONS
SEARCH DETAIL