Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biochem ; 176(1): 23-34, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38382634

ABSTRACT

Cancer antigen 125 (CA125) is a serum marker associated with ovarian cancer. Despite its widespread use, CA125 levels can also be elevated in benign conditions. Recent reports suggest that detecting serum CA125 that carries the Tn antigen, a truncated O-glycan containing only N-acetylgalactosamine on serine or threonine residues, can improve the specificity of ovarian cancer diagnosis. In this study, we engineered cells to express CA125 with a Tn antigen. To achieve this, we knocked out C1GALT1 and SLC35A1, genes encoding Core1 synthase and a transporter for cytidine-5'-monophospho-sialic acid respectively, in human embryonic kidney 293 (HEK293) cells. In ClGALT1-SLC35A1-knockout (KO) cells, the expression of the Tn antigen showed a significant increase, whereas the expression of the T antigen (galactose-ß1,3-N-acetylgalactosamine on serine or threonine residues) was decreased. Due to the inefficient secretion of soluble CA125, we employed a glycosylphosphatidylinositol (GPI) anchoring system. This allowed for the expression of GPI-anchored CA125 on the cell surface of ClGALT1-SLC35A1-KO cells. Cells expressing high levels of GPI-anchored CA125 were then enriched through cell sorting. By knocking out the PGAP2 gene, the GPI-anchored form of CA125 was converted to a secretory form. Through the engineering of O-glycans and the use of a GPI-anchoring system, we successfully produced CA125 with Tn antigen modification.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate , CA-125 Antigen , Galactosyltransferases , Glycosylphosphatidylinositols , Humans , Antigens, Tumor-Associated, Carbohydrate/metabolism , CA-125 Antigen/metabolism , HEK293 Cells , Glycosylphosphatidylinositols/metabolism , Galactosyltransferases/metabolism , Galactosyltransferases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Female
2.
Adv Mater ; : e1801794, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29962024

ABSTRACT

Complex oxide heterostructures have fascinating emergent properties that originate from the properties of the bulk constituents as well as from dimensional confinement. The conductive behavior of the polar/nonpolar LaAlO3 /SrTiO3 interface can be reversibly switched using conductive atomic force microscopy (c-AFM) lithography, enabling a wide range of devices and physics to be explored. Here, extreme nanoscale control over the CaZrO3 /SrTiO3 (CZO/STO) interface, which is formed from two materials that are both nonpolar, is reported. Nanowires with measured widths as narrow as 1.2 nm are realized at the CZO/STO interface at room temperature by c-AFM lithography. These ultrathin nanostructures have spatial dimensions at room temperature that are comparable to single-walled carbon nanotubes, and hold great promise for alternative oxide-based nanoelectronics, as well as offer new opportunities to investigate the electronic structure of the complex oxide interfaces. The cryogenic properties of devices constructed from quasi-1D channels, tunnel barriers, and planar gates exhibit gate-tunable superconductivity, quantum oscillations, electron pairing outside of the superconducting regime, and quasi-ballistic transport. This newly demonstrated ability to control the metal-insulator transition at nonpolar oxide interface greatly expands the class of materials whose behavior can be patterned and reconfigured at extreme nanoscale dimensions.

SELECTION OF CITATIONS
SEARCH DETAIL
...