Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Food Chem ; 450: 139347, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38653047

ABSTRACT

Food freshness monitoring is an important component in ensuring food safety for consumers and the food industry. Therefore, there is an urgent need for a portable, low-cost, and efficient detection method to determine the freshness. In this study, polyvinyl alcohol (PVA) was used as polymer carrier to prepare electrospinning film containing curcumin (Cur) and gardenia blue (GB) as intelligent indicator label on food packaging for real-time nondestructive detection of freshness of shrimp. The detection limit of ammonia response is less than or equal to 20 ppm, and the detection time is about 1 min, indicating that it has a sensitive response effect. At the same time, a smartphone application that can identify amines in response to color changes has been developed, and consumers can understand freshness by scanning the label. This study demonstrates the huge potential of smart indicator labels for food freshness monitoring.


Subject(s)
Food Packaging , Polyvinyl Alcohol , Smartphone , Animals , Polyvinyl Alcohol/chemistry , Food Packaging/instrumentation , Amines/chemistry , Amines/analysis , Penaeidae/chemistry , Shellfish/analysis , Curcumin/chemistry , Curcumin/analysis
2.
Sci Adv ; 8(32): eabp9096, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35960800

ABSTRACT

High-entropy alloys (HEAs) are promising to provide effective antiballistic capability because of their superior mechanical properties. However, the twinning-active Cantor alloy is found less ballistic resistant, compared with its Mn-free companion. It is unclear how the HEAs resist ballistic impact and why Mn does not benefit the ballistic resistance. Here, we used molecular dynamics simulations to investigate the ballistic resistances of CrMnFeCoNi and CrFeCoNi and elucidate underlying mechanisms. It is shown that the alloys' ballistic resistances dominantly benefit from active dislocations generated at higher strain rates. Stronger atomic bonding and higher dislocation densities make the CrFeCoNi easier to be strain hardened with elevated toughness to resist high-speed deformation, while weaker atomic bonding and easier occurrence of dislocation tangling make CrMnFeCoNi less resistant to failure under ballistic impact. This work helps better understand the antiballistic behavior of HEAs and guide the design of armor and energy-absorption materials.

3.
STAR Protoc ; 3(3): 101552, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35852942

ABSTRACT

Identifying and designing high-performance multi-element ceramics based on trial-and-error approaches are ineffective and expensive. Here, we present a machine-learning-accelerated method for prediction of mechanical properties of multi-element ceramics, based on the density functional theory calculation database. Specific bonding characteristics are used as highly efficient machine learning descriptors. This protocol describes a low-cost, high-efficiency, and reliable workflow for developing advanced ceramics with superior mechanical properties. For complete details on the use and execution of this protocol, please refer to Tang et al. (2021).


Subject(s)
Ceramics , Machine Learning
4.
ACS Appl Mater Interfaces ; 14(16): 18486-18497, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35412787

ABSTRACT

Ion intercalation of perovskite oxides in liquid electrolytes is a very promising method for controlling their functional properties while storing charge, which opens up its potential application in different energy and information technologies. Although the role of defect chemistry in oxygen intercalation in a gaseous environment is well established, the mechanism of ion intercalation in liquid electrolytes at room temperature is poorly understood. In this study, the defect chemistry during ion intercalation of La0.5Sr0.5FeO3-δ thin films in alkaline electrolytes is studied. Oxygen and proton intercalation into the La1-xSrxFeO3-δ perovskite structure is observed at moderate electrochemical potentials (0.5 to -0.4 V), giving rise to a change in the oxidation state of Fe (as a charge compensation mechanism). The variation of the concentration of holes as a function of the intercalation potential is characterized by in situ ellipsometry, and the concentration of electron holes is indirectly quantified for different electrochemical potentials. Finally, a dilute defect chemistry model that describes the variation of defect species during ionic intercalation is developed.

5.
Sci Rep ; 11(1): 11565, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34078932

ABSTRACT

Electron work function (EWF) has demonstrated its great promise in materials analysis and design, particularly for single-phase materials, e.g., solute selection for optimal solid-solution strengthening. Such promise is attributed to the correlation of EWF with the atomic bonding and stability, which largely determines material properties. However, engineering materials generally consist of multiple phases. Whether or not the overall EWF of a complex multi-phase material can reflect its properties is unclear. Through investigation on the relationships among EWF, microstructure, mechanical and electrochemical properties of low-carbon steel samples with two-level microstructural inhomogeneity, we demonstrate that the overall EWF does carry the information on integrated electron behavior and overall properties of multiphase alloys. This study makes it achievable to develop "electronic metallurgy"-an electronic based novel alternative methodology for materials design.

6.
Bioorg Med Chem Lett ; 37: 127844, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33556569

ABSTRACT

In this study, we used chemical modification to improve the pharmacological activity of norisoboldine (NOR). A new NOR-benzoic acid derivative, named DC-01, showed more potent induction of Treg cell differentiation than NOR. The in vitro effective concentration of DC-01 (1 µM) is about an order of magnitude lower than that of NOR (10 µM). DC-01 (28, 56 mg/kg) showed better amelioration of dextran sodium sulfate-induced colitis in mice than NOR (20, 40 mg/kg), and DC-01 (28 mg/kg) increased the number of Treg cells slightly better than NOR (20 mg/kg). In summary, DC-01 exerts more potent induction of Treg cell generation, which might be a candidate drug for the treatment of inflammation- and immune-related diseases.


Subject(s)
Alkaloids/pharmacology , Colitis, Ulcerative/drug therapy , T-Lymphocytes, Regulatory/drug effects , Alkaloids/chemical synthesis , Alkaloids/chemistry , Animals , Cell Differentiation/drug effects , Cell Survival , Colitis, Ulcerative/chemically induced , Dextran Sulfate , Dose-Response Relationship, Drug , Mice , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
7.
Curr Microbiol ; 78(2): 705-712, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33410957

ABSTRACT

This study was conducted for the metagenomic analysis of stool samples from CRC affected individuals to identify biomarkers for CRC in Hainan, the only tropical island province of China. The gut microbiota of CRC patients differed significantly from that of healthy and reference database cohorts based on Aitchison distance and Bray-Cutis distance but there was no significant difference in alpha diversity. Furthermore, at the species level, 68 species were significantly altered including 37 CRC-enriched, such as, Fusobacterium nucleatum, Parvimonas micra, Gemella morbillorum, Citrobacter portucalensis, Alloprevotella sp., Shigella sonnei, Coriobacteriaceae bacterium, etc. Sixty-seven different metabolic pathways were acquired, and pathways involved in the synthesis of many amino acids were significantly declined. Besides, 2 identified antibiotic resistance genes performed well (area under the receive-operation curve AUC = 0.833, 95% CI 58.51-100%) compared with virulence factor genes. The results of the present study provide region-specific bacterial and functional biomarkers of gut microbiota for CRC patients in Hainan. Microbiota is considered as a non-invasive biomarker for the detection of CRC. Gut microbiota of different geographic regions should be further studied to expand the understanding of markers, especially for the China cohort due to diverse nationalities and lifestyles.


Subject(s)
Colorectal Neoplasms , Biomarkers , China , Citrobacter , Firmicutes , Gemella , Humans
8.
Materials (Basel) ; 13(6)2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32197425

ABSTRACT

In this work, a mechanochemical process using high-energy milling conditions was employed to synthesize La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) powders from the corresponding stoichiometric amounts of La2O3, SrO, Ga2O3, and MgO in a short time. After 60 min of milling, the desired final product was obtained without the need for any subsequent annealing treatment. A half solid oxide fuel cell (SOFC) was then developed using LSGM as an electrolyte and La0.8Sr0.2MnO3 (LSM) as an electrode, both obtained by mechanochemistry. The characterization by X-ray diffraction of as-prepared powders showed that LSGM and LSM present a perovskite structure and pseudo-cubic symmetry. The thermal and chemical stability between the electrolyte (LSGM) and the electrode (LSM) were analyzed by dynamic X-ray diffraction as a function of temperature. The electrolyte (LSGM) is thermally stable up to 800 and from 900 °C, where the secondary phases of LaSrGa3O7 and LaSrGaO4 appear. The best sintering temperature for the electrolyte is 1400 °C, since at this temperature, LaSrGaO4 disappears and the percentage of LaSrGa3O7 is minimized. The electrolyte is chemically compatible with the electrode up to 800 °C. The powder sample of the electrolyte (LSGM) at 1400 °C observed by HRTEM indicates that the cubic symmetry Pm-3m is preserved. The SOFC was constructed using the brush-painting technique; the electrode-electrolyte interface characterized by SEM presented good adhesion at 800 °C. The electrical properties of the electrolyte and the half-cell were analyzed by complex impedance spectroscopy. It was found that LSGM is a good candidate to be used as an electrolyte in SOFC, with an Ea value of 0.9 eV, and the LSM sample is a good candidate to be used as cathode.

9.
J Med Chem ; 62(23): 10798-10815, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31725288

ABSTRACT

To develop novel and efficient heat shock protein 90-cell division cycle 37 (Hsp90-Cdc37) interaction disruptors, several lipophilic fragments were introduced into celastrol (CEL) to synthesize 48 new CEL derivatives. Among all the target compounds, 41 was screened with superior antiproliferative activity on related cancer cells (IC50: 0.41-0.94 µM) and 41 could decrease the level of the Hsp90-Cdc37 complex in A549 cells. The capability to disrupt the Hsp90-Cdc37 interaction was stronger than that of CEL. Furthermore, pull-down assay, UV assay, and molecular docking analysis all showed that 41 might disrupt the interaction of the Hsp90-Cdc37 complex by preferentially binding to Cdc37 in cancer cells. Further studies showed that 41 could significantly regulate the levels of Hsp90-Cdc37 clients, thereby inducing the apoptosis of cancer cells. Together, 41 is a novel Hsp90-Cdc37 disruptor by binding to Cdc37 (hydrogen bond and/or covalent bond). Our results may provide reference for the discovery of effective Hsp90-Cdc37 disruptors.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/metabolism , Chaperonins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Triterpenes/chemistry , Triterpenes/pharmacology , A549 Cells , Antineoplastic Agents/chemical synthesis , Cell Cycle/drug effects , Drug Discovery , Humans , Pentacyclic Triterpenes
10.
Nanoscale ; 11(30): 14155-14163, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31334741

ABSTRACT

We implement non-equilibrium Green's function (NEGF) calculations to investigate thermal transport across graphene/metal interfaces with interlayer van der Waals interactions to understand the factors influencing thermal conductance across the interface. It is found that interfaces with a smaller interfacial lattice mismatch, lighter metal substrate and stronger interfacial bonding strength will show better interfacial thermal transport abilities. Strain induced by the interfacial lattice mismatch in graphene is the key factor for the decrease of interfacial phonon transmission in the main frequency range of metals, which finally results in a decrease of interfacial thermal conductance. A comprehensive interfacial influencing factor is proposed combining the factors of graphene density, metal density and interfacial binding energy to realize the prediction of interfacial thermal conductance across the graphene/metal interface. The results are hoped to promote the understanding of the thermal transport mechanism and design of graphene based 2D/3D materials interfaces.

11.
Sci Rep ; 6: 33521, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27641933

ABSTRACT

Single molecule localization microscopy (SMLM) is on its way to become a mainstream imaging technique in the life sciences. However, analysis of SMLM data is biased by user provided subjective parameters required by the analysis software. To remove this human bias we introduce here the Auto-Bayes method that executes the analysis of SMLM data automatically. We demonstrate the success of the method using the photoelectron count of an emitter as selection characteristic. Moreover, the principle can be used for any characteristic that is bimodally distributed with respect to false and true emitters. The method also allows generation of an emitter reliability map for estimating quality of SMLM-based structures. The potential of the Auto-Bayes method is shown by the fact that our first basic implementation was able to outperform all software packages that were compared in the ISBI online challenge in 2015, with respect to molecule detection (Jaccard index).

12.
Chem Commun (Camb) ; 52(59): 9240-2, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27353453

ABSTRACT

We obtained the fluorescence localization images of tube DNA origami nanostructures in NIH 3T3 cells for the first time. The fluorescence localization images of tube DNA origami nanostructures and TIRF images of lysosomes were combined and they revealed the detailed interactions between the two structures. Quantitative analysis illustrated that the tube origami can be captured as well as degraded by lysosomes with time.


Subject(s)
DNA/chemistry , Fluorescence , Lysosomes/chemistry , Microscopy, Fluorescence
13.
Sci Rep ; 5: 16559, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26548331

ABSTRACT

Highly dynamic tubular structures in cells are responsible for exchanges between organelles. Compared with bacterial invasion, the most affordable and least toxic lipids were found in this study to be gentle and safe exogenous stimuli for the triggering of membrane tubules. A specific lipid system was internalized by NIH3T3 cells. Following cellular uptake, the constructed liposomes traveled towards the nucleus in aggregations and were gradually distributed into moving vesicles and tubules in the cytosol. The triggered tubules proceeded, retreated or fluctuated along the cytoskeleton and were highly dynamic, moving quickly (up to several microns per second), and breaking and fusing frequently. These elongated tubules could also fuse with one another, giving rise to polygonal membrane networks. These lipid systems, with the novel property of accelerating intracellular transport, provide a new paradigm for investigating cellular dynamics.


Subject(s)
Membranes/metabolism , Microtubules/metabolism , Animals , Biological Transport , Lipid Metabolism , Liposomes/chemistry , Membranes/chemistry , Mice , Microscopy, Confocal , NIH 3T3 Cells , Peptides/metabolism , Transport Vesicles/metabolism
14.
Sci Rep ; 5: 11073, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-26098742

ABSTRACT

Single molecule localization based super-resolution fluorescence microscopy offers significantly higher spatial resolution than predicted by Abbe's resolution limit for far field optical microscopy. Such super-resolution images are reconstructed from wide-field or total internal reflection single molecule fluorescence recordings. Discrimination between emission of single fluorescent molecules and background noise fluctuations remains a great challenge in current data analysis. Here we present a real-time, and robust single molecule identification and localization algorithm, SNSMIL (Shot Noise based Single Molecule Identification and Localization). This algorithm is based on the intrinsic nature of noise, i.e., its Poisson or shot noise characteristics and a new identification criterion, QSNSMIL, is defined. SNSMIL improves the identification accuracy of single fluorescent molecules in experimental or simulated datasets with high and inhomogeneous background. The implementation of SNSMIL relies on a graphics processing unit (GPU), making real-time analysis feasible as shown for real experimental and simulated datasets.

15.
J Mol Model ; 19(11): 4781-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24013440

ABSTRACT

A systematic investigation of the thermal conductivity of zigzag graphene nanoribbons (ZGNRs) doped with nitrogen and containing a vacancy defect was performed using reverse nonequilibrium molecular dynamics (RNEMD). The investigation showed that the thermal conductivity of the ZGNRs was significantly reduced by nitrogen doping. The thermal conductivity dropped rapidly when the nitrogen doping concentration was low. Also, the presence of a vacancy defect was found to significantly decrease the thermal conductivity. Initially, as the vacancy moved from the heat sink to the heat source, the phonon frequency and the phonon energy increased, and the thermal conductivity decreased. When the distance between the vacancy in the ZGNR and the edge of the heat sink reached 2.214 nm, tunneling began to occur, allowing high-frequency phonons to pass through the vacancies and transfer some energy. The curve of the thermal conductivity of the ZGNRs versus the vacancy position was found to be pan-shaped, with the thermal conductivity of the ZGNRs controlled by the phonon. These findings could be useful when attempting to control heat transfer on the nanoscale using GNR-based thermal devices.

16.
J Phys Condens Matter ; 23(49): 495302, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22101167

ABSTRACT

In the present work, we study theoretically the electron wave's focusing phenomenon in a single-layered graphene pn junction (PNJ) and obtain the electric current density distribution of graphene PNJ, which is in good agreement with the qualitative result in previous numerical calculations (Cheianov et al 2007 Science, 315, 1252). In addition, we find that, for a symmetric PNJ, 1/4 of total electric current radiated from the source electrode can be collected by the drain electrode. Furthermore, this ratio reduces to 3/16 in a symmetric graphene npn junction. Our results obtained by the present analytical method provide a general design rule for an electric lens based on negative refractory index systems.


Subject(s)
Electric Conductivity , Electricity , Electrodes , Graphite/chemistry , Lenses , Models, Theoretical , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...