Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; : e2400277, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771626

ABSTRACT

Addressing the demand for integrating strength and durability reinforcement in shape memory polyurethane (SMPU) for diverse applications remains a significant challenge. Here a series of SMPUs with ultra-high strength, self-healing and recyclability, and excellent shape memory properties through introducing dynamic boron-urethane bonds are synthesized. The introducing of boric acid (BA) to polyurethane leading to the formation of dynamic covalent bonds (DCB) boron-urethane, that confer a robust cross-linking structure on the SMPUs led to the formation of ordered stable hydrogen-bonding network within the SMPUs. The flexible crosslinking with DCB represents a novel strategy for balancing the trade-off between strength and durability, with their strengths reaching up to 82.2 MPa while also addressing the issue of durability in prolonged usage through the provision of self-healing and recyclability. The self-healing and recyclability of SMPU are demonstrated through rapid dynamic exchange reaction of boron-urethane bonds, systematically investigated by dynamic mechanical analysis (DMA). This study sheds light on the essential role of such PU with self-healing and recyclability, contributing to the extension of the PU's service life. The findings of this work provide a general strategy for overcoming traditional trade-offs in preparing SMPUs with both high strength and good durability.

2.
ACS Appl Mater Interfaces ; 15(20): 24968-24977, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37165632

ABSTRACT

Shape memory polymer (SMP)-based smart molds, which could provide high-resolution mold shape and morph in response to external stimuli for readily demolding the complex structure, attract extensive attention. However, the suitable SMP for smart molds is usually confined with low stretchability that likely causes damage during demolding. Herein, we present a cyanate ester smart composite (CESC) with a reconfigurable, solvent-processable, and near-infrared (NIR)-triggerable shape memory effect (SME), which enables the 2D sheet with a variety of morphed complex shapes through deformation in a mild situation. Notably, the reconfigurable SME and the recyclability of the shape memory cyanate ester (SMCE) were addressed for the first time, attributed to the dynamic covalent bonds of transesterification and the novel cyanurate exchange. In addition, we found that the mechanism of solvent-processable SME is attributed to the varied cross-linking density and the mobility of the polymer chain. Integrating the multiple responsive SME and reconfigurable SME, the CESC demonstrated versatile applications as a smart mold. The results demonstrate a wide scope of application of the integrated SME and provide a new design strategy for thermoset cyanate materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...