Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(37): 15238-15248, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37672041

ABSTRACT

Heterostructure interfacial engineering between photocatalyst and co-catalyst to obtain an optimized electronic structure is a promising approach to improving their performance in the photocatalytic hydrogen evolution reaction (HER). In this work, two-dimensional nanopetal-like ZnIn2S4 (ZIS) with an adequately exposed active (110) edge facet-decorated Ni cluster heterostructure was prepared via chemical bath deposition, followed by photodeposition. In the catalyst preparation, the ZIS microstructure was modulated to sufficiently expose the active sites of the (110) edge for the HER, on which spontaneous interfacial engineering with an additional Ni cluster co-catalyst would be triggered via photodeposition in situ. The hydrogen production rate of the composite photocatalyst was excellent, at up to 26.80 mmol g-1 h-1 under simulated sunlight, which was 15.4 times greater than that of pristine ZIS. The optimized photocatalyst achieved a state-of-the-art apparent quantum yield of 61.68% at a single wavelength of 420 nm. Combined with systematic experimental characterization and density functional theory calculation, it was demonstrated that the separation and migration of charge carriers were significantly enhanced via the Ni cluster-induced interfacial electron redistribution, which contributed to the near-zero Gibbs free energy barrier and favored intermediate (*H) adsorption and desorption behavior, resulting in the superior photocatalytic performance. In summary, this work enables tuning of the interfacial electronic properties via spontaneous photodeposition of metallic cluster co-catalyst on the edge active sites, through which the separation of photogenerated charge carriers and surface redox reactions can be synergistically facilitated.

2.
Natl Sci Rev ; 10(11): nwad233, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38188025

ABSTRACT

Exploration of artificial aggregation-induced emission luminogens (AIEgens) has garnered extensive interest in the past two decades. In particular, AIEgens possessing natural characteristics (BioAIEgens) have received more attention recently due to the advantages of biocompatibility, sustainability and renewability. However, the extremely limited number of BioAIEgens extracted from natural sources have retarded their development. Herein, a new class of BioAIEgens based on the natural scaffold of chromene have been facilely synthesized via green reactions in a water system. These compounds show regiostructure-, polymorphism- and substituent-dependent fluorescence, which clearly illustrates the close relationship between the macroscopic properties and hierarchical structure of aggregates. Due to the superior biocompatibility of the natural scaffold, chromene-based BioAIEgens can specifically target the endoplasmic reticulum (ER) via the introduction of tosyl amide. This work has provided a new chromene scaffold for functional BioAIEgens on the basis of green and sustainable 'in-water' synthesis, applicable regiostructure-dependent fluorescence, and effective ER-specific imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...