Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 234
Filter
1.
Se Pu ; 42(7): 711-720, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-38966979

ABSTRACT

Protein citrullination is an irreversible post-translational modification process regulated by peptidylarginine deiminases (PADs) in the presence of Ca2+. This process is closely related to the occurrence and development of autoimmune diseases, cancers, neurological disorders, cardiovascular and cerebrovascular diseases, and other major diseases. The analysis of protein citrullination by biomass spectrometry confronts great challenges owing to its low abundance, lack of affinity tags, small mass-to-charge ratio change, and susceptibility to isotopic and deamidation interferences. The methods commonly used to study the protein citrullination mainly involve the chemical derivatization of the urea group of the guanine side chain of the peptide to increase the mass-to-charge ratio difference of the citrullinated peptide. Affinity-enriched labels are then introduced to effectively improve the sensitivity and accuracy of protein citrullination by mass spectrometry. 2,3-Butanedione or phenylglyoxal compounds are often used as derivatization reagents to increase the mass-to-charge ratio difference of the citrullinated peptide, and the resulting derivatives have been observed to contain α-dicarbonyl structures. To date, however, no relevant studies on the reactivity of dicarbonyl compounds with citrullinated peptides have been reported. In this study, we determined whether six α-dicarbonyl and two ß-dicarbonyl compounds undergo derivatization reactions with standard citrullinated peptides using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Among the α-dicarbonyl compounds, 2,3-butanedione and glyoxal reacted efficiently with several standard citrullinated peptides, but yielded a series of by-products. Phenylglyoxal, methylglyoxal, 1,2-cyclohexanedione, and 1,10-phenanthroline-5,6-dione also derivated efficiently with standard citrullinated peptides, generating a single derivative. Thus, a new derivatization method that could yield a single derivative was identified. Among the ß-dicarbonyl compounds, 1,3-cyclohexanedione and 2,4-pentanedione successfully reacted with the standard citrullinated peptides, and generated a single derivative. However, their reaction efficiency was very low, indicating that the ß-dicarbonyl compounds are unsuitable for the chemical derivatization of citrullinated peptides. The above results indicate that the α-dicarbonyl structure is necessary for realizing the efficient and specific chemical derivatization of citrullinated peptides. Moreover, the side chains of the α-dicarbonyl structure determine the structure of the derivatives, derivatization efficiency, and generation (or otherwise) of by-products. Therefore, the specific enrichment and precise identification of citrullinated peptides can be achieved by synthesizing α-dicarbonyl structured compounds containing affinity tags. The proposed method enables the identification of citrullinated proteins and their modified sites by MS, thereby providing a better understanding of the distribution of citrullinated proteins in different tissues. The findings will be beneficial for studies on the mechanism of action of citrullinated proteins in a variety of diseases.


Subject(s)
Citrullination , Peptides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Peptides/chemistry
2.
Angew Chem Int Ed Engl ; : e202407791, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860734

ABSTRACT

Light-driven photoredox catalysis presents a promising approach for the activation and conversion of methane (CH4) into high value-added chemicals under ambient conditions. However, the high C-H bond dissociation energy of CH4 and the absence of well-defined C-H activation sites on catalysts significantly limit the highly efficient conversion of CH4 toward multicarbon (C2+) hydrocarbons, particularly ethylene (C2H4). Herein, we demonstrate a bimetallic design of Ag nanoparticles (NPs) and Pd single atoms (SAs) on ZnO for the cascade conversion of CH4 into C2H4 with the highest production rate compared with previous works. Mechanistic studies reveal that the synergistic effect of Ag NPs and Pd SAs, upon effecting key bond-breaking and -forming events, lowers the overall energy barrier of the activation process of both CH4 and the resulting C2H6, constituting a truly synergistic catalytic system to facilitate the C2H4 generation. This work offers a novel perspective on the advancement of photocatalytic directional CH4 conversion toward high value-added C2+ hydrocarbons through the subtle design of bimetallic cascade catalyst strategy.

3.
J Integr Neurosci ; 23(6): 118, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38940085

ABSTRACT

BACKGROUND: Alcohol abuse, a prevalent global health issue, is associated with the onset of cognitive impairment and neurodegeneration. Actin filaments (F-actin) and microtubules (MTs) polymerized from monomeric globular actin (G-actin) and tubulin form the structural basis of the neuronal cytoskeleton. Precise regulation of the assembly and disassembly of these cytoskeletal proteins, and their dynamic balance, play a pivotal role in regulating neuronal morphology and function. Nevertheless, the effect of prolonged alcohol exposure on cytoskeleton dynamics is not fully understood. This study investigates the chronic effects of alcohol on cognitive ability, neuronal morphology and cytoskeleton dynamics in the mouse hippocampus. METHODS: Mice were provided ad libitum access to 5% (v/v) alcohol in drinking water and were intragastrically administered 30% (v/v, 6.0 g/kg/day) alcohol for six weeks during adulthood. Cognitive functions were then evaluated using the Y maze, novel object recognition and Morris water maze tests. Hippocampal histomorphology was assessed through hematoxylin-eosin (HE) and Nissl staining. The polymerized and depolymerized states of actin cytoskeleton and microtubules were separated using two commercial assay kits and quantified by Western blot analysis. RESULTS: Mice chronically exposed to alcohol exhibited significant deficits in spatial and recognition memory as evidenced by behavioral tests. Histological analysis revealed notable hippocampal damage and neuronal loss. Decreased ratios of F-actin/G-actin and MT/tubulin, along with reduced levels of polymerized F-actin and MTs, were found in the hippocampus of alcohol-treated mice. CONCLUSIONS: Our findings suggest that chronic alcohol consumption disrupted the assembly of the actin cytoskeleton and MTs in the hippocampus, potentially contributing to the cognitive deficits and pathological injury induced by chronic alcohol intoxication.


Subject(s)
Actin Cytoskeleton , Ethanol , Hippocampus , Microtubules , Animals , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Microtubules/drug effects , Microtubules/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Male , Ethanol/pharmacology , Ethanol/administration & dosage , Mice , Mice, Inbred C57BL , Central Nervous System Depressants/pharmacology , Central Nervous System Depressants/administration & dosage , Disease Models, Animal , Behavior, Animal/drug effects
4.
Fish Shellfish Immunol ; 150: 109623, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750705

ABSTRACT

The interleukin-12 (IL-12) family is a class of heterodimeric cytokines that play crucial roles in pro-inflammatory and pro-stimulatory responses. Although some IL-12 and IL-23 paralogues have been found in fish, their functional activity in fish remains poorly understood. In this study, Pf_IL-12p35a/b, Pf_IL-23p19 and Pf_IL-12p40a/b/c genes were cloned from yellow catfish (Pelteobagrus fulvidraco), four α-helices were found in Pf_IL-12p35a/b and Pf_IL-23p19. The transcripts of these six genes were relatively high in mucus and immune tissues of healthy individuals, and in gill leukocytes. Following Edwardsiella ictaluri infection, Pf_IL-12p35a/b and Pf_IL-23p19 mRNAs were induced in brain and kidney (or head kidney), Pf_IL-12p40a mRNA was induced in gill, and Pf_IL-12p40b/c mRNAs were induced in brain and liver (or skin). The mRNA expression of these genes in PBLs was induced by phytohaemagglutinin (PHA) and polyinosinic-polycytidylic acid (poly I:C), while lipopolysaccharides (LPS) induced the mRNA expression of Pf_IL-12p35a and Pf_IL-12p40b/c in PBLs. After stimulation with recombinant (r) Pf_IL-12 and rPf_IL-23 subunit proteins, either alone or in combination, mRNA expression patterns of genes related to T helper cell development exhibited distinct differences. The results suggest that Pf_IL-12 and Pf_IL-23 subunits may play important roles in regulating immune responses to pathogens and T helper cell development.


Subject(s)
Catfishes , Enterobacteriaceae Infections , Fish Diseases , Fish Proteins , Gene Expression Profiling , Gene Expression Regulation , Immunity, Innate , Interleukin-12 Subunit p40 , Animals , Catfishes/genetics , Catfishes/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/veterinary , Fish Diseases/immunology , Gene Expression Regulation/immunology , Interleukin-12 Subunit p40/genetics , Interleukin-12 Subunit p40/immunology , Gene Expression Profiling/veterinary , Immunity, Innate/genetics , Edwardsiella ictaluri/physiology , Interleukin-12 Subunit p35/genetics , Interleukin-12 Subunit p35/immunology , Phylogeny , Amino Acid Sequence , Sequence Alignment/veterinary , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/immunology , Poly I-C/pharmacology
5.
Environ Pollut ; 354: 124178, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38763294

ABSTRACT

Cadmium (Cd) pollution has been a significant concern in heavy metal pollution, prompting plants to adopt various strategies to mitigate its damage. While the response of plants to Cd stress and the impact of exogenous melatonin has received considerable attention, there has been limited focus on the responses of closely related species to these factors. Consequently, our investigation aimed to explore the response of three different species of rape to Cd stress and examine the influence of exogenous melatonin in this scenario. The research findings revealed distinctive responses among the investigated rape species. B. campestris showed the resistance to Cd and exhibited lower Cd absorption and sustained its physiological activity under Cd stress. In contrast, B. juncea accumulated much Cd and increased the amount of anthocyanin to mitigate the Cd-damage. Furthermore, B. napus showed the tolerance to Cd and tended to accumulate Cd in vacuoles under Cd stress, thereby decreasing the Cd damage and leading to higher activity of antioxidant enzymes and photosynthesis. Moreover, the application of exogenous melatonin significantly elevated the melatonin level in plants and mitigated Cd toxicity by promoting the activity of antioxidant enzymes, reducing Cd absorption, enhancing the chelating capacity with Cd, decreasing Cd accumulation in organelles, and reducing its fluidity. Specifically, exogenous melatonin increased the FHAc content in B. campestris, elevated the phytochelatins (PCs) level in B. napus, and stimulated photosynthesis in B. juncea. In summary, the findings underscore the species-specific responses of the three species of rape to both Cd stress and exogenous melatonin, highlighting the potential for tailored mitigation strategies based on the unique characteristics of each species.


Subject(s)
Cadmium , Melatonin , Cadmium/toxicity , Melatonin/pharmacology , Soil Pollutants/toxicity , Species Specificity , Brassica napus/drug effects , Photosynthesis/drug effects , Antioxidants/metabolism
6.
Front Pharmacol ; 15: 1344786, 2024.
Article in English | MEDLINE | ID: mdl-38783938

ABSTRACT

Introduction: Glycopyrrolate is commonly researched as a preoperative medication or in conjunction with cholinesterase inhibitors to counteract the lingering muscarinic effects of non-depolarizing muscarinic agents. However, studies have yielded inconsistent results regarding the superiority of glycopyrrolate over other anti-cholinergic drugs, such as atropine, particularly its effect on heart rate, blood pressure (BP), and glandular secretions. This study aimed to evaluate the differences in perioperative oral secretions, hemodynamics, and recovery quality with glycopyrrolate versus those with atropine before anesthesia induction in children undergoing tonsillectomy and adenoidectomy. Methods: In this prospective, single-center, randomized, double-blind, controlled trial, a total of 103 children were randomly assigned to group A (n = 51, glycopyrrolate 0.005 mg/kg) or B (n = 52, atropine 0.01 mg/kg). The follow-up anesthetic induction and maintenance protocols were the same in both groups. Vital signs, duration of surgery, extubation time, degree of wetness around the vocal cords during tracheal intubation, weight of oral secretions, and perioperative complications were recorded. Results: No significant differences were observed in the degree of wetness around the vocal cords during tracheal intubation, as well as in the weight of oral secretions, duration of surgery, or extubation time, between the two groups. The intraoperative and postoperative heart rates were lower in group A than in group B (110.18 ± 10.58 vs. 114.94 ± 11.14, p = 0.028; 96.96 ± 10.81 vs. 103.38 ± 10.09, p = 0.002). The differences observed in the intraoperative and preoperative heart rates were lower in group A than in group B (23.84 ± 9.62 vs. 29.65 ± 8.75, p = 0.002). The differences observed in the postoperative and preoperative heart rates were lower in group A than in group B (10.63 ± 9.97 vs. 18.09 ± 9.39, p = 0.000). Conclusion: Glycopyrrolate showed a smoother change in heart rate than atropine during and after tonsillectomy and adenoidectomy, with no effect on BP or recovery quality, and did not increase oral secretions. The findings indicate that glycopyrrolate can serve as an alternative to atropine to prevent secretions in anesthesia induction for tonsillectomy and adenoidectomy in children. Trial registration: This study was registered with the Chinese Clinical Trial Registry (Registration Number: ChiCTR2200063578; Date of Registration: 12/09/2022).

7.
Head Neck ; 46(5): 1009-1019, 2024 May.
Article in English | MEDLINE | ID: mdl-38441255

ABSTRACT

OBJECTIVE: To enhance the accuracy in predicting lymph node metastasis (LNM) preoperatively in patients with papillary thyroid microcarcinoma (PTMC), refining the "low-risk" classification for tailored treatment strategies. METHODS: This study involves the development and validation of a predictive model using a cohort of 1004 patients with PTMC undergoing thyroidectomy along with central neck dissection. The data was divided into a training cohort (n = 702) and a validation cohort (n = 302). Multivariate logistic regression identified independent LNM predictors in PTMC, leading to the construction of a predictive nomogram model. The model's performance was assessed through ROC analysis, calibration curve analysis, and decision curve analysis. RESULTS: Identified LNM predictors in PTMC included age, tumor maximum diameter, nodule-capsule distance, capsular contact length, bilateral suspicious lesions, absence of the lymphatic hilum, microcalcification, and sex. Especially, tumors larger than 7 mm, nodules closer to the capsule (less than 3 mm), and longer capsular contact lengths (more than 1 mm) showed higher LNM rates. The model exhibited AUCs of 0.733 and 0.771 in the training and validation cohorts respectively, alongside superior calibration and clinical utility. CONCLUSION: This study proposes and substantiates a preoperative predictive model for LNM in patients with PTMC, honing the precision of "low-risk" categorization. This model furnishes clinicians with an invaluable tool for individualized treatment approach, ensuring better management of patients who might be proposed observation or ablative options in the absence of such predictive information.


Subject(s)
Carcinoma, Papillary , Thyroid Neoplasms , Humans , Thyroid Neoplasms/surgery , Thyroid Neoplasms/pathology , Carcinoma, Papillary/surgery , Carcinoma, Papillary/pathology , Neck Dissection , Thyroidectomy , Lymphatic Metastasis/pathology , Retrospective Studies , Lymph Nodes/pathology , Risk Factors
8.
J Org Chem ; 89(7): 5109-5117, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38483841

ABSTRACT

A novel strategy for the selective construction of a C(sp3)-P(III) or -P(V) bond from >P(O)-H compounds and aldehydes is disclosed. By using the H3PO3/I2 system, various secondary phosphine oxides could react with both aromatic and aliphatic aldehydes to afford valuable phosphines (isolated as sulfides) and phosphine oxides in good yields. This method features a wide substrate scope and simple reaction conditions and avoids the use of toxic halides and metals.

9.
Angew Chem Int Ed Engl ; 63(17): e202401434, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38425264

ABSTRACT

Traditional H2O2 cleavage mediated by macroscopic electron transfer (MET) not only has low utilization of H2O2, but also sacrifices the stability of catalysts. We present a non-redox hydroxyl-enriched spinel (CuFe2O4) catalyst with dual Lewis acid sites to realize the homolytic cleavage of H2O2. The results of systematic experiments, in situ characterizations, and theoretical calculations confirm that tetrahedral Cu sites with optimal Lewis acidity and strong electron delocalization can synergistically elongate the O-O bonds (1.47 Š→ 1.87 Å) in collaboration with adjacent bridging hydroxyl (another Lewis acid site). As a result, the free energy of H2O2 homolytic cleavage is decreased (1.28 eV → 0.98 eV). H2O2 can be efficiently split into ⋅OH induced by hydroxyl-enriched CuFe2O4 without MET, which greatly improves the catalyst stability and the H2O2 utilization (65.2 %, nearly 2 times than traditional catalysts). The system assembled with hydroxyl-enriched CuFe2O4 and H2O2 affords exceptional performance for organic pollutant elimination. The scale-up experiment using a continuous flow reactor realizes long-term stability (up to 600 mL), confirming the tremendous potential of hydroxyl-enriched CuFe2O4 for practical applications.

10.
Chin J Traumatol ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38514297

ABSTRACT

PURPOSE: This study evaluated the methods and clinical effects of multidisciplinary collaborative treatment for occlusal reconstruction in patients with old jaw fractures and dentition defects. METHODS: Patients with old jaw fractures and dentition defects who underwent occlusal reconstruction at the Third Affiliated Hospital of Air Force Military Medical University from January 2018 to December 2022 were enrolled. Clinical treatment was classified into 3 phases. In phase I, techniques such as orthognathic surgery, microsurgery, and distraction osteogenesis were employed to reconstruct the correct three-dimensional (3D) jaw position relationship. In phase II, bone augmentation and soft tissue management techniques were utilized to address insufficient alveolar bone mass and poor gingival soft tissue conditions. In phase III, implant-supported overdentures or fixed dentures were used for occlusal reconstruction. A summary of treatment methods, clinical efficacy evaluation, comparative analysis of imageological examinations, and satisfaction questionnaire survey were utilized to evaluate the therapeutic efficacy in patients with traumatic old jaw fractures and dentition defects. All data are summarized using the arithmetic mean and standard deviation and compared using independent sample t-tests. RESULTS: In 15 patients with old jaw fractures and dentition defects (an average age of 32 years, ranging from 18 to 53 years), there were 7 cases of malocclusion of single maxillary fracture, 6 of malocclusion of single mandible fracture, and 2 of malocclusion of both maxillary and mandible fractures. There were 5 patients with single maxillary dentition defects, 2 with single mandibular dentition defects, and 8 with both maxillary and mandibular dentition defects. To reconstruct the correct 3D jaw positional relationship, 5 patients underwent Le Fort I osteotomy of the maxilla, 3 underwent bilateral sagittal split ramus osteotomy of the mandible, 4 underwent open reduction and internal fixation for old jaw fractures, 3 underwent temporomandibular joint surgery, and 4 underwent distraction osteogenesis. All patients underwent jawbone augmentation, of whom 4 patients underwent a free composite vascularized bone flap (26.66%) and the remaining patients underwent local alveolar bone augmentation. Free gingival graft and connective tissue graft were the main methods for soft tissue augmentation (73.33%). The 15 patients received 81 implants, of whom 11 patients received implant-supported fixed dentures and 4 received implant-supported removable dentures. The survival rate of all implants was 93.82%. The final imageological examination of 15 patients confirmed that the malocclusion was corrected, and the clinical treatment ultimately achieved occlusal function reconstruction. The patient satisfaction questionnaire survey showed that they were satisfied with the efficacy, phonetics, aesthetics, and comfort after treatment. CONCLUSION: Occlusal reconstruction of old jaw fractures and dentition defects requires a phased sequential comprehensive treatment, consisting of 3D spatial jaw correction, alveolar bone augmentation and soft tissue augmentation, and implant-supported occlusal reconstruction, achieving satisfactory clinical therapeutic efficacy.

11.
Sci Rep ; 14(1): 4600, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409313

ABSTRACT

Climate change has become an unavoidable problem in achieving sustainable development. As one of the major industries worldwide, tourism can make a significant contribution to mitigating climate change. The main objective of the paper is to assess the development level of low-carbon tourism from multi-aspect, using the Yellow River Basin as an example. Firstly, this study quantified tourism carbon dioxide emissions and tourism economy, and analyzed their evolution characteristics. The interaction and coordination degree between tourism carbon dioxide emissions and tourism economy were then analyzed using the improved coupling coordination degree model. Finally, this study analyzed the change in total factor productivity of low-carbon tourism by calculating the Malmquist-Luenberger productivity index. The results showed that: (1) the tourism industry in the Yellow River Basin has the characteristics of the initial environmental Kuznets curve. (2) There was a strong interaction between tourism carbon dioxide emissions and tourism economy, which was manifested as mutual promotion. (3) The total factor productivity of low-carbon tourism was increasing. Based on the above results, it could be concluded that the development level of low-carbon tourism in the Yellow River Basin has been continuously improved from 2000 to 2019, but it is still in the early development stage with the continuous growth of carbon dioxide emissions.

12.
Mitochondrial DNA B Resour ; 9(1): 209-213, 2024.
Article in English | MEDLINE | ID: mdl-38298222

ABSTRACT

The mitochondrial genome (mitogenome) of Boulenophrys baishanzuensis (Anura: Megophryidae) was sequenced by the Illumina platform. The assembled circular mitogenome of B. baishanzuensis had a total length of 17,040 bp, with a GC content of 41.25%. It consisted of 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes, and a D-loop region. The majority of the PCGs were encoded by the H-strand, while one PCG (nad6) and eight tRNA genes (tRNA-Gln, tRNA-Ala, tRNA-Asn, tRNA-Cys, tRNA-Tyr, tRNA-Ser2, tRNA-Glu, and tRNA-Pro) were encoded in the L-strand. Phylogenetic analysis revealed that the newly sequenced species formed a clade with other Boulenophrys species, while the genus Boulenophrys itself formed a sister group with the genus Atympanophrys.

13.
Front Immunol ; 15: 1332492, 2024.
Article in English | MEDLINE | ID: mdl-38375480

ABSTRACT

Purpose: The need for adjuvant therapy (AT) following neoadjuvant chemoimmunotherapy (nICT) and surgery in esophageal squamous cell cancer (ESCC) remains uncertain. This study aims to investigate whether AT offers additional benefits in terms of recurrence-free survival (RFS) for ESCC patients after nICT and surgery. Methods: Retrospective analysis was conducted between January 2019 and December 2022 from three centers. Eligible patients were divided into two groups: the AT group and the non-AT group. Survival analyses comparing different modalities of AT (including adjuvant chemotherapy and adjuvant chemoimmunotherapy) with non-AT were performed. The primary endpoint was RFS. Propensity score matching(PSM) was used to mitigate inter-group patient heterogeneity. Kaplan-Meier survival curves and Cox regression analysis were employed for recurrence-free survival analysis. Results: A total of 155 nICT patients were included, with 26 patients experiencing recurrence. According to Cox analysis, receipt of adjuvant therapy emerged as an independent risk factor(HR:2.621, 95%CI:[1.089,6.310], P=0.032), and there was statistically significant difference in the Kaplan-Meier survival curves between non-AT and receipt of AT in matched pairs (p=0.026). Stratified analysis revealed AT bring no survival benefit to patients with pathological complete response(p= 0.149) and residual tumor cell(p=0.062). Subgroup analysis showed no significant difference in recurrence-free survival between non-AT and adjuvant chemoimmunotherapy patients(P=0.108). However, patients receiving adjuvant chemotherapy exhibited poorer recurrence survival compared to non-AT patients (p= 0.016). Conclusion: In terms of recurrence-free survival for ESCC patients after nICT and surgery, the necessity of adjuvant therapy especially the adjuvant chemotherapy, can be mitigated.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/therapy , Neoadjuvant Therapy , Esophageal Neoplasms/pathology , Retrospective Studies , Propensity Score , Disease-Free Survival
14.
Clin Cosmet Investig Dermatol ; 17: 365-382, 2024.
Article in English | MEDLINE | ID: mdl-38352064

ABSTRACT

Background: Psoriasis is a frequent form of chronic inflammation in dermatology that is unmistakably linked to the metabolic syndrome (MetS) and its elements. This study was to explore the current status and new developments in the global research, and the holistic landscape of this field more intuitively through bibliometric analysis of scientific output and activity. Methods: Publications regarding psoriasis and MetS were searched and chosen from the database of the Web of Science Core Collection. Excel 2019, VOSviewer, and CiteSpace software were utilized to conduct bibliometric analysis. Results: There were 1096 publications included. The scientific outputs in this field had increased from 2004 to 2022, and the expansion could continue in the following years. The United States contributed the most publications (241, 21.99%) and had the most citation frequency (13,489 times). The University of California System was the most productive affiliation. Girolomoni G., Armstrong A.W., Gisondi P. and Gelfand J.M. were key and influential researchers. Journal of the European Academy of Dermatology and Venereology published the greatest number of articles (65 articles). By analyzing keyword frequency and clustering, we have identified the following areas of research interest and frontiers: prevalence, risk, association, gene expression, waist circumference, adipose tissue inflammation, vascular inflammation, cardiovascular disease, psoriatic arthritis, and fibrosis. Conclusion: This bibliometric analysis elucidates research domain of psoriasis and MetS, portraying present hotspots and future emerging trends. This field has generated significant interest and displays potential for further growth. The United States has made distinguished contributions, and currently dominates this field.

15.
Angew Chem Int Ed Engl ; 63(19): e202318682, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38407535

ABSTRACT

Gaining mechanistic understanding of oxygen activation on metal surfaces is a topical area of research in surface science. However, direct investigation of on-surface oxidation processes at the nanoscale and the empirical validation of oxygen activation pathways remain challenging for the conventional analytical tools. In this study, we applied tip-enhanced Raman spectroscopy (TERS) to gain mechanistic insights into oxygen activation on bulk Au(111) surface. Specifically, oxidation of 4-aminothiophenol (4-ATP) to 4-nitrothiophenol (4-NTP) on Au(111) surface was investigated using hyperspectral TERS imaging. Nanoscale TERS images revealed a markedly higher oxidation efficiency in disordered 4-ATP adlayers compared to the ordered adlayers signifying that the oxidation of 4-ATP molecules proceeds via interaction with the on-surface oxidative species. These results were further validated via direct oxidation of the 4-ATP adlayers with H2O2 solution. Finally, TERS measurements of oxidized 4-ATP adlayers in the presence of H2O18 provided the first empirical evidence for the generation of oxidative species on bulk Au(111) surface via water-mediated activation of molecular oxygen. This study expands our mechanistic understanding of oxidation chemistry on bulk Au surface by elucidating the oxygen activation pathway.

16.
Small ; 20(26): e2310248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38234145

ABSTRACT

Interfering with intratumoral metabolic processes is proven to effectively sensitize different antitumor treatments. Here, a tumor-targeting catalytic nanoplatform (CQ@MIL-GOX@PB) loading with autophagy inhibitor (chloroquine, CQ) and glucose oxidase (GOX) is fabricated to interfere with the metabolisms of tumor cells and tumor-associated macrophages (TAMs), then realizing effective antitumor chemodynamic therapy (CDT). Once accumulating in the tumor site with the navigation of external biotin, CQ@MIL-GOX@PB will release Fe ions and CQ in the acid lysosomes of tumor cells, the latter can sensitize Fe ions-involved antitumor CDT by blocking the autophagy-dependent cell repair. Meanwhile, the GOX component will consume glucose, which not only generates many H2O2 for CDT but also once again decelerates the tumor repair process by reducing energy metabolism. What is more, the release of CQ can also drive the NO anabolism of TAMs to further sensitize CDT. This strategy of multiple metabolic regulations is evidenced to significantly improve the antitumor effect of traditional CDT nanoagents and might provide a new sight to overcome the bottlenecks of different antitumor treatments.


Subject(s)
Glucose Oxidase , Animals , Glucose Oxidase/metabolism , Humans , Cell Line, Tumor , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Chloroquine/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Autophagy/drug effects , Nanoparticles/chemistry
17.
Angew Chem Int Ed Engl ; 63(5): e202317610, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38095883

ABSTRACT

Functionalization of the C(sp3 )-H bonds of trialkylamines is challenging, especially for reactions at positions other than the α position. Herein, we report a method for ß-C(sp3 )-H allylation of trialkylamines. In these reactions, which involve synergistic borane/palladium catalysis, an enamine intermediate is first generated from the amine via α,ß-dehydrogenation promoted by B(C6 F5 )3 and a base, and then the enamine undergoes palladium-catalyzed reaction with an allene to give the allylation product. Because the hydride and the proton resulting from the initial dehydrogenation are ultimately shuttled to the product by B(C6 F5 )3 and the palladium catalyst, respectively, these reactions show excellent atom economy. The establishment of this method paves the way for future studies of C-H functionalization of trialkylamines by means of synergistic borane/transition-metal catalysis.

18.
Nat Commun ; 14(1): 8255, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086803

ABSTRACT

The hypothesis of N-methyl-D-aspartate receptor (NMDAR) dysfunction for cognitive impairment in schizophrenia constitutes the theoretical basis for the translational application of NMDAR co-agonist D-serine or its analogs. However, the cellular mechanism underlying the therapeutic effect of D-serine remains unclear. In this study, we utilize a mouse neurodevelopmental model for schizophrenia that mimics prenatal pathogenesis and exhibits hypoexcitability of parvalbumin-positive (PV) neurons, as well as PV-preferential NMDAR dysfunction. We find that D-serine restores excitation/inhibition balance by reconstituting both synaptic and intrinsic inhibitory control of cingulate pyramidal neurons through facilitating PV excitability and activating small-conductance Ca2+-activated K+ (SK) channels in pyramidal neurons, respectively. Either amplifying inhibitory drive via directly strengthening PV neuron activity or inhibiting pyramidal excitability via activating SK channels is sufficient to improve cognitive function in this model. These findings unveil a dual mechanism for how D-serine improves cognitive function in this model.


Subject(s)
Schizophrenia , Mice , Animals , Pregnancy , Female , Schizophrenia/drug therapy , Serine/pharmacology , Pyramidal Cells/physiology , Neurons/metabolism , Synaptic Transmission , Receptors, N-Methyl-D-Aspartate/metabolism
20.
Pathogens ; 12(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37764880

ABSTRACT

Hepatitis E virus (HEV) is a significant public health concern worldwide. Pregnant women are at high risk of severe HEV infection. Various adverse outcomes in pregnant women related to HEV infection have been well documented in low-income and middle-income countries with poor sanitation. However, previous studies have provided inconsistent conclusions regarding the effects of HEV infection on the health of pregnant women and their infants in developed countries and contemporary China. In China, previous studies on HEV in pregnant women mainly focused on anti-HEV IgM and/or anti-HEV IgG. In this study, 4244 pregnant women were retrospectively analyzed for HEV-related markers. The positive rates of HEV antigen, HEV RNA, anti-HEV IgM, and anti-HEV IgG were 0.28%, 0.54%, 0.35%, and 10.49%, respectively. Among the 467 pregnant women who tested positive for at least one HEV-related marker, 92.93% (434) were positive for anti-HEV IgG only and 0.21% (1) were positive for HEV antigen, anti-HEV IgM, and anti-HEV IgG. Although the prevalence of anti-HEV IgG significantly increased with age, the prevalence of anti-HEV IgM, HEV RNA, and HEV antigen did not differ among pregnant women of different ages. Thirty-three pregnant women were positive for at least one of anti-HEV IgM, HEV antigen, and HEV RNA, and these individuals were recently or currently infected with HEV. None of the 33 pregnant women exhibited obvious clinical symptoms. Of the 33 pregnant women, 39.39% (13) experienced adverse fetal outcomes, including preterm birth, fetal distress, and low birth weight, the incidence of which was significantly higher than in pregnant women who were not recently or currently infected with HEV. These findings suggest that maternal HEV infection may impact the health of fetuses; thus, these results may contribute to the development of appropriate public health interventions for this population.

SELECTION OF CITATIONS
SEARCH DETAIL
...