Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Commun Signal ; 22(1): 308, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831451

ABSTRACT

Gasdermin D (GSDMD) is emerging as an important player in autoimmune diseases, but its exact role in lupus nephritis (LN) remains controversial. Here, we identified markedly elevated GSDMD in human and mouse LN kidneys, predominantly in CD11b+ myeloid cells. Global or myeloid-conditional deletion of GSDMD was shown to exacerbate systemic autoimmunity and renal injury in lupus mice with both chronic graft-versus-host (cGVH) disease and nephrotoxic serum (NTS) nephritis. Interestingly, RNA sequencing and flow cytometry revealed that myeloid GSDMD deficiency enhanced granulopoiesis at the hematopoietic sites in LN mice, exhibiting remarkable enrichment of neutrophil-related genes, significant increases in total and immature neutrophils as well as granulocyte/macrophage progenitors (GMPs). GSDMD-deficient GMPs and all-trans-retinoic acid (ATRA)-stimulated human promyelocytes NB4 were further demonstrated to possess enhanced clonogenic and differentiation abilities compared with controls. Mechanistically, GSDMD knockdown promoted self-renewal and granulocyte differentiation by restricting calcium influx, contributing to granulopoiesis. Functionally, GSDMD deficiency led to increased pathogenic neutrophil extracellular traps (NETs) in lupus peripheral blood and bone marrow-derived neutrophils. Taken together, our data establish that GSDMD deletion accelerates LN development by promoting granulopoiesis in a calcium influx-regulated manner, unraveling its unrecognized critical role in LN pathogenesis.


Subject(s)
Calcium , Lupus Nephritis , Phosphate-Binding Proteins , Lupus Nephritis/pathology , Lupus Nephritis/metabolism , Lupus Nephritis/genetics , Animals , Humans , Mice , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/deficiency , Calcium/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/deficiency , Neutrophils/metabolism , Granulocytes/metabolism , Myeloid Cells/metabolism , Mice, Inbred C57BL , Female , Extracellular Traps/metabolism , Cell Differentiation , Gasdermins
2.
Cell Death Dis ; 15(6): 397, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844455

ABSTRACT

Integrin αvß6 holds promise as a therapeutic target for organ fibrosis, yet targeted therapies are hampered by concerns over inflammatory-related side effects. The role of αvß6 in renal inflammation remains unknown, and clarifying this issue is crucial for αvß6-targeted treatment of chronic kidney disease (CKD). Here, we revealed a remarkable positive correlation between overexpressed αvß6 in proximal tubule cells (PTCs) and renal inflammation in CKD patients and mouse models. Notably, knockout of αvß6 not only significantly alleviated renal fibrosis but also reduced inflammatory responses in mice, especially the infiltration of pro-inflammatory macrophages. Furthermore, conditional knockout of αvß6 in PTCs in vivo and co-culture of PTCs with macrophages in vitro showed that depleting αvß6 in PTCs suppressed the migration and pro-inflammatory differentiation of macrophages. Screening of macrophage activators showed that αvß6 in PTCs activates macrophages via secreting IL-34. IL-34 produced by PTCs was significantly diminished by αvß6 silencing, and reintroduction of IL-34 restored macrophage activities, while anti-IL-34 antibody restrained macrophage activities enhanced by αvß6 overexpression. Moreover, RNA-sequencing of PTCs and verification experiments demonstrated that silencing αvß6 in PTCs blocked hypoxia-stimulated IL-34 upregulation and secretion by inhibiting YAP expression, dephosphorylation, and nuclear translocation, which resulted in the activation of Hippo signaling. While application of a YAP agonist effectively recurred IL-34 production by PTCs, enhancing the subsequent macrophage migration and activation. Besides, reduced IL-34 expression and YAP activation were also observed in global or PTCs-specific αvß6-deficient injured kidneys. Collectively, our research elucidates the pro-inflammatory function and YAP/IL-34/macrophage axis-mediated mechanism of αvß6 in renal inflammation, providing a solid rationale for the use of αvß6 inhibition to treat kidney inflammation and fibrosis.


Subject(s)
Integrins , Macrophages , Mice, Knockout , Renal Insufficiency, Chronic , Animals , Macrophages/metabolism , Mice , Humans , Integrins/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Inflammation/pathology , Inflammation/metabolism , Male , Antigens, Neoplasm/metabolism , Mice, Inbred C57BL , Signal Transduction , Disease Models, Animal , YAP-Signaling Proteins/metabolism , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Fibrosis
3.
Immunity ; 57(6): 1306-1323.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38815582

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) regulate inflammation and tissue repair at mucosal sites, but whether these functions pertain to other tissues-like the kidneys-remains unclear. Here, we observed that renal fibrosis in humans was associated with increased ILC3s in the kidneys and blood. In mice, we showed that CXCR6+ ILC3s rapidly migrated from the intestinal mucosa and accumulated in the kidney via CXCL16 released from the injured tubules. Within the fibrotic kidney, ILC3s increased the expression of programmed cell death-1 (PD-1) and subsequent IL-17A production to directly activate myofibroblasts and fibrotic niche formation. ILC3 expression of PD-1 inhibited IL-23R endocytosis and consequently amplified the JAK2/STAT3/RORγt/IL-17A pathway that was essential for the pro-fibrogenic effect of ILC3s. Thus, we reveal a hitherto unrecognized migration pathway of ILC3s from the intestine to the kidney and the PD-1-dependent function of ILC3s in promoting renal fibrosis.


Subject(s)
Cell Movement , Fibrosis , Kidney , Lymphocytes , Programmed Cell Death 1 Receptor , Receptors, CXCR6 , Receptors, Interleukin , Signal Transduction , Animals , Fibrosis/immunology , Mice , Receptors, CXCR6/metabolism , Receptors, CXCR6/immunology , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction/immunology , Cell Movement/immunology , Humans , Kidney/pathology , Kidney/immunology , Kidney/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Receptors, Interleukin/metabolism , Receptors, Interleukin/immunology , Mice, Inbred C57BL , Kidney Diseases/immunology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Immunity, Innate/immunology , Mice, Knockout , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestines/immunology , Intestines/pathology
4.
Opt Express ; 32(7): 11534-11547, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38570998

ABSTRACT

Femtosecond optical parametric oscillators (OPOs) are widely used in ultrafast nonlinear frequency conversion and quantum information. However, conventional OPOs based on quasi-phase-matching (QPM) crystals have many parasitic non-phase-matched processes which decrease the conversion efficiency. Here, we propose nine-wave coupled equations (NWCEs) to simulate all phase-matched and non-phase-matched interactions in QPM crystals to improve conventional three-wave coupled equations (TWCEs), especially for the situation of high intensity ultrashort pulses and complexly structured crystals. We discuss how to design the poling period of QPM crystal to maximize the conversion efficiency of signal light for a given OPO system. The simulation reveals that the OPO based on chirped periodically poled lithium niobate (CPPLN) with a certain chirp rate has higher signal wave conversion efficiency than that of a PPLN, and demonstrates that NWCEs illustrate more details of the pulse evolution in the OPO cavity. Starting from a CPPLN, an aperiodically poled lithium niobate (APPLN) design is available by modifying the domain lengths of the crystal and optimizing the OPO output power via dynamical optimization algorithm. The results show that by using a properly designed APPLN crystal, a 1600 nm OPO, when pumped by a femtosecond laser with 1030 nm central wavelength, 150 femtosecond pulse duration and 5 GW/cm2 power intensity at the focus, can achieve very efficient output with a signal light conversion efficiency of 50.6%, which is higher than that of PPLN (25.2%) and CPPLN (40.2%). The scheme in this paper will provide a reference for the design of nonlinear QPM crystals of OPOs and will help to understand the complex nonlinear dynamical behavior in OPO cavities.

5.
Talanta ; 274: 125932, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38537351

ABSTRACT

Alpha-fetoprotein (AFP), as a tumor marker, plays a vital role in the diagnosis of liver cancer. In this work, a novel sandwich immunoassay based on a thermosensitive polymer, poly(N-isopropylacrylamide) (PNIPAM), was developed for the detection of AFP. This immunoassay could realize one-step rapid reaction within 1 h, and facilitate the separation of the target molecules by incorporating PNIPAM. In this method, a conjugate of PNIPAM and capture antibody (Ab1) was successfully synthesized as a capture probe and the synthetic method of PNIPAM-Ab1 was simple, while the detection antibody (Ab2) was labeled with fluorescein isothiocyanate (FITC) to form a fluorescent detection probe. By employing a sandwich immunoassay, the method achieved quantitative determination of AFP, exhibiting a wide linear range from 5 ng/mL to 200 ng/mL and a low detection limit of 2.44 ng/mL. Furthermore, it was successfully applied to the analysis of spiked human serum samples and the screening of patients with hepatic diseases in clinical samples, indicating its potential application prospect in the diagnosis of liver cancer.


Subject(s)
Acrylic Resins , alpha-Fetoproteins , alpha-Fetoproteins/analysis , alpha-Fetoproteins/immunology , Acrylic Resins/chemistry , Humans , Immunoassay/methods , Limit of Detection , Liver Neoplasms/blood , Liver Neoplasms/diagnosis
6.
Opt Express ; 32(5): 7907-7918, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439460

ABSTRACT

In this paper, the optimal solution of effective nonlinear coefficient of quasi-phase-matching (QPM) crystals for coupled third harmonic generation (CTHG) was numerically investigated. The effective nonlinear coefficient of CTHG was converted to an Ising model for optimizing domain distributions of aperiodically poled lithium niobate (APPLN) crystals with lengths as 0.5 mm and 1 mm, and fundamental wavelengths ranging from 1000 nm to 6000 nm. A method for reconstructing crystal domain poling weight curve of coupled nonlinear processes was also proposed, which demonstrated the optimal conversion ratio between two coupled nonlinear processes at each place along the crystal. In addition, by applying the semidefinite programming, the upper bound on the effective nonlinear coefficients deff for different fundamental wavelengths were calculated. The research can be extended to any coupled dual χ(2) process and will help us to understand better the dynamics of coupled nonlinear interactions based on QPM crystals.

7.
Adv Sci (Weinh) ; 11(13): e2307850, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240457

ABSTRACT

Kidney fibrosis is a common fate of chronic kidney diseases (CKDs), eventually leading to renal dysfunction. Yet, no effective treatment for this pathological process has been achieved. During the bioassay-guided chemical investigation of the medicinal plant Wikstroemia chamaedaphne, a daphne diterpenoid, daphnepedunin A (DA), is characterized as a promising anti-renal fibrotic lead. DA shows significant anti-kidney fibrosis effects in cultured renal fibroblasts and unilateral ureteral obstructed mice, being more potent than the clinical trial drug pirfenidone. Leveraging the thermal proteome profiling strategy, cell division cycle 42 (Cdc42) is identified as the direct target of DA. Mechanistically, DA targets to reduce Cdc42 activity and down-regulates its downstream phospho-protein kinase Cζ(p-PKCζ)/phospho-glycogen synthase kinase-3ß (p-GSK-3ß), thereby promoting ß-catenin Ser33/37/Thr41 phosphorylation and ubiquitin-dependent proteolysis to block classical pro-fibrotic ß-catenin signaling. These findings suggest that Cdc42 is a promising therapeutic target for kidney fibrosis, and highlight DA as a potent Cdc42 inhibitor for combating CKDs.


Subject(s)
Diterpenes , Kidney Diseases , cdc42 GTP-Binding Protein , Animals , Mice , beta Catenin/drug effects , beta Catenin/metabolism , Fibrosis/drug therapy , Glycogen Synthase Kinase 3 beta/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Kidney/metabolism , Kidney Diseases/drug therapy , Wikstroemia/chemistry , Diterpenes/pharmacology , cdc42 GTP-Binding Protein/drug effects
8.
Adv Sci (Weinh) ; 10(35): e2302804, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37915129

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) represent a new population in immune regulation, yet their role in lupus nephritis (LN) remains elusive. In the present work, systemic increases in ILC3s, particularly in the kidney, are observed to correlate strongly with disease severity in both human and murine LN. Using MRL/lpr lupus mice and a nephrotoxic serum-induced LN model, this study demonstrates that ILC3s accumulated in the kidney migrate predominantly from the intestine. Furthermore, intestinal ILC3s accelerate LN progression, manifested by exacerbated autoimmunity and kidney injuries. In LN kidneys, ILC3s are located adjacent to B cells within ectopic lymphoid structures (ELS), directly activating B cell differentiation into plasma cells and antibody production in a Delta-like1 (DLL1)/Notch-dependent manner. Blocking DLL1 attenuates ILC3s' effects and protects against LN. Altogether, these findings reveal a novel pathogenic role of ILC3s in B cell activation, renal ELS formation and autoimmune injuries during LN, shedding light on the therapeutic value of targeting ILC3s for LN.


Subject(s)
Lupus Nephritis , Humans , Animals , Mice , Lupus Nephritis/drug therapy , Lupus Nephritis/pathology , Immunity, Innate , Lymphocytes , Mice, Inbred MRL lpr , Kidney
9.
Front Immunol ; 14: 1078310, 2023.
Article in English | MEDLINE | ID: mdl-36860851

ABSTRACT

Background: There is a complex interaction between chronic kidney disease (CKD) and ulcerative colitis (UC), but the pathophysiological mechanisms underlying the coexistence of CKD and UC are unclear. This study aimed to investigate the key molecules and pathways that may mediate the co-occurrence of CKD and UC through quantitative bioinformatics analysis based on a public RNA-sequencing database. Methods: The discovery datasets of CKD (GSE66494) and UC (GSE4183), as well as validation datasets of CKD (GSE115857) and UC (GSE10616), were downloaded from the Gene Expression Omnibus (GEO) database. After identifying differentially expressed genes (DEGs) with GEO2R online tool, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for the DEGs were performed. Next, protein-protein interaction network was constructed with Search Tool for the Retrieval of Interacting Genes (STRING) and visualized by Cytoscape. Gene modules were identified by the plug-in MCODE and hub genes were screened using the plug-in CytoHubba. Then, correlation between immune cell infiltration and hub genes was analyzed, and the receiver operating characteristic curves were used to assess the predictive value of hub genes. Finally, immunostaining of human specimens was used to validate the relevant findings. Results: A total of 462 common DEGs were identified and selected for further analyses. GO and KEGG enrichment analyses indicated that these DEGs were primarily enriched in immune- and inflammation-related pathways. Among them, the PI3K-Akt signaling pathway ranked top in both discovery and validation cohorts, and the key signal molecule phosphorylated Akt (p-Akt) was shown to be significantly overexpressed in human CKD kidneys and UC colons, and further elevated in CKD-UC comorbidity specimens. Moreover, nine candidate hub genes, including CXCL8, CCL2, CD44, ICAM1, IL1A, CXCR2, PTPRC, ITGAX, and CSF3, were identified, of which ICAM1 was validated as a common hub gene. Besides, immune infiltration analysis revealed that neutrophils, macrophages, and CD4+ T memory cells significantly accumulated in both diseases, and ICAM1 was remarkably associated with neutrophil infiltration. Furthermore, intercellular adhesion molecule1 (ICAM1)-mediated neutrophil infiltration was validated to be upregulated in kidney and colon biopsies of CKD and UC patients, and further increased in patients diagnosed with both CKD and UC. Finally, ICAM1 had shown critical value as a diagnostic marker for the co-occurrence of CKD and UC. Conclusions: Our study elucidated that immune response, PI3K-Akt signaling pathway, and ICAM1-mediated neutrophil infiltration might be the common pathogenesis of CKD and UC, and identified ICAM1 as a key potential biomarker and therapeutic target for the comorbidity of these two diseases.


Subject(s)
Colitis, Ulcerative , Renal Insufficiency, Chronic , Humans , Colitis, Ulcerative/genetics , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/genetics , Renal Insufficiency, Chronic/genetics , Databases, Nucleic Acid
10.
Biosensors (Basel) ; 12(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36290939

ABSTRACT

Since it is difficult for human eyes to distinguish between two identical colors with only <15% variation in brightness, mono-color fluorescent hydrogel microspheres have some limitations in the detection of lactate. Herein, we prepared novel dual-color fluorescent hydrogel microspheres, which can achieve hue transformation. Microspheres were prepared by introducing a fluorescent nanoparticle as the reference signal while CdTe QDs were used as the response signal. We used smartphones with image processing software to collect and analyze data. In this way, the signal of lactate was converted to RGB (red, green, and blue) values, which can be quantitatively read. Within 10 to 1500 µM, the R/G values of the microspheres had a linear relationship with the logarithm of the lactate concentration. Moreover, color cards for lactate detection were prepared, from which the color change and concentration of lactate could be easily read by the naked eye. It is worth mentioning that this method was successfully applied to screen patients with hyperlactatemia.


Subject(s)
Cadmium Compounds , Quantum Dots , Humans , Tellurium , Spectrometry, Fluorescence , Microspheres , Fluorescent Dyes , Smartphone , Hydrogels , Lactic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...