Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters










Publication year range
1.
Curr Med Chem ; 20(27): 3339-57, 2013.
Article in English | MEDLINE | ID: mdl-23862615

ABSTRACT

The present article attempts to provide, on the basis of data emerging from studies carried out in our laboratories, a summary of the chemical and pharmacological properties of the new compound N-[(4-trifluoromethyl)benzyl]4- methoxybutyramide (GET73). Particular emphasis is given to findings obtained in vivo and in vitro suggesting that an allosteric modulation of metabotropic glutamate receptor 5 (mGlu5 receptor) by GET73 may represent the mechanism underlying the effects of the compound produced on rat hippocampal glutamate and GABA transmission. Furthermore, behavioural findings demonstrating how this new compound reduces alcohol intake, displays anxiolytic properties, and influences spatial memory in rats are also summarized. Since mGlu5 receptors play an important role in regulating several central actions of drugs of abuse, and the hippocampus is a crucial brain area involved in addiction, anxiety, and spatial memory, a possible link between mGlu5 receptor allosteric modulation and the profiles of action of GET73 is proposed, although to date no studies have yet explored GET73 binding at the mGlu5 receptor orthosteric and/or allosteric sites. Following a brief overview of glutamatergic neurotransmission, mGlu receptor structures and activation mechanisms, the general properties of mGlu5 receptor and its allosteric modulators are described in the first part of the review.


Subject(s)
Anilides/pharmacology , Hippocampus/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Synaptic Transmission/drug effects , Alcohol Drinking , Allosteric Regulation , Anilides/chemical synthesis , Anilides/chemistry , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/pharmacology , Hippocampus/drug effects , Receptor, Metabotropic Glutamate 5/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism
2.
Curr Med Chem ; 19(3): 304-16, 2012.
Article in English | MEDLINE | ID: mdl-22335510

ABSTRACT

The existence of functional NT/dopamine interactions in the central nervous system has been extensively documented. Among others, a possible molecular mechanism underlying the NT-induced modulation of dopamine release is a direct antagonistic NTS(1)/D(2) receptor interaction. More recently, neurochemical experiments also supported the existence of a possible interaction between NT and N-methyl-d-aspartate (NMDA) receptors. In particular, it has been suggested that NT, by amplifying NMDA receptor signaling, could be involved in neurodegeneration. The present article attempts to provide a summary of current knowledge, mainly emerging from our studies, on the existence of receptor-receptor interactions between NT receptor subtype 1 (NTS1) and dopamine D(2) or NMDA receptors in the brain. Special emphasis is placed on the pre and post-synaptic neurochemical mechanisms possibly underlying the involvement of these interactions in the physiopathology of schizophrenia and acute neurodegenerative disorders.


Subject(s)
Neurodegenerative Diseases/metabolism , Receptors, Dopamine D2/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Neurotensin/metabolism , Schizophrenia/metabolism , Animals , Humans , Models, Biological , Neurodegenerative Diseases/pathology , Neurotensin/chemical synthesis , Neurotensin/chemistry , Neurotensin/metabolism , Protein Interaction Mapping , Receptors, Neurotensin/antagonists & inhibitors , Schizophrenia/pathology , Structure-Activity Relationship
3.
Curr Med Chem ; 19(3): 356-63, 2012.
Article in English | MEDLINE | ID: mdl-22335512

ABSTRACT

The concept of intramembrane receptor-receptor interactions and evidence for their existences were introduced in the beginning of the 1980's, suggesting the existence of receptor heterodimerization. The discovery of GPCR heteromers and the receptor mosaic (higher order oligomers, more than two) has been related to the parallel development and application of a variety of resonance energy transfer techniques such as bioluminescence (BRET), fluorescence (FRET) and sequential energy transfer (SRET). The assembly of interacting GPCRs, heterodimers and receptor mosaic leads to changes in the agonist recognition, signaling, and trafficking of participating receptors via allosteric mechanisms, sometimes involving the appearance of cooperativity. The receptor interface in the GPCR heteromers is beginning to be characterized and the key role of electrostatic epitope-epitope interactions for the formation of the receptor heteromers will be discussed. Furthermore, a "guide-and-clasp" manner of receptor-receptor interactions has been proposed where the "adhesive guides" may be the triplet homologies. These interactions probably represent a general molecular mechanism for receptor-receptor interactions. It is proposed that changes in GPCR function (moonlighting) may develop through the intracellular loops and C-terminii of the GPCR heteromers as a result of dynamic allosteric interactions between different types of G proteins and other receptor interacting proteins in these domains of the receptors. The evidence for the existence of receptor heteromers opens up a new field for a better understanding of neurophysiology and neuropathology. Furthermore, novel therapeutic approaches could be possible based on the use of heteromers as targets for drug development based on their unique pharmacology.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Allosteric Regulation , Fluorescence Resonance Energy Transfer , Protein Interaction Mapping , Protein Structure, Quaternary , Receptor, Adenosine A2A/metabolism , Receptors, Dopamine D2/metabolism , Receptors, G-Protein-Coupled/chemistry , Signal Transduction
4.
CNS Neurosci Ther ; 16(3): e18-42, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20345970

ABSTRACT

Adenosine-dopamine interactions in the central nervous system (CNS) have been studied for many years in view of their relevance for disorders of the CNS and their treatments. The discovery of adenosine and dopamine receptor containing receptor mosaics (RM, higher-order receptor heteromers) in the striatum opened up a new understanding of these interactions. Initial findings indicated the existence of A(2A)R-D(2)R heterodimers and A(1)R-D(1)R heterodimers in the striatum that were followed by indications for the existence of striatal A(2A)R-D(3)R and A(2A)R-D(4)R heterodimers. Of particular interest was the demonstration that antagonistic allosteric A(2A)-D(2) and A(1)-D(1) receptor-receptor interactions take place in striatal A(2A)R-D(2)R and A(1)R-D(1)R heteromers. As a consequence, additional characterization of these heterodimers led to new aspects on the pathophysiology of Parkinson's disease (PD), schizophrenia, drug addiction, and l-DOPA-induced dyskinesias relevant for their treatments. In fact, A(2A)R antagonists were introduced in the symptomatic treatment of PD in view of the discovery of the antagonistic A(2A)R-D(2)R interaction in the dorsal striatum that leads to reduced D(2)R recognition and G(i/o) coupling in striato-pallidal GABAergic neurons. In recent years, indications have been obtained that A(2A)R-D(2)R and A(1)R-D(1)R heteromers do not exist as heterodimers, rather as RM. In fact, A(2A)-CB(1)-D(2) RM and A(2A)-D(2)-mGlu(5) RM have been discovered using a sequential BRET-FRET technique and by using the BRET technique in combination with bimolecular fluorescence complementation. Thus, other pathogenic mechanisms beside the well-known alterations in the release and/or decoding of dopamine in the basal ganglia and limbic system are involved in PD, schizophrenia and drug addiction. In fact, alterations in the stoichiometry and/or topology of A(2A)-CB(1)-D(2) and A(2A)-D(2)-mGlu5 RM may play a role. Thus, the integrative receptor-receptor interactions in these RM give novel aspects on the pathophysiology and treatment strategies, based on combined treatments, for PD, schizophrenia, and drug addiction.


Subject(s)
Adenosine/metabolism , Central Nervous System Diseases/physiopathology , Central Nervous System Diseases/therapy , Dopamine/metabolism , Animals , Drug Interactions , Humans , Models, Biological , Models, Molecular , Receptors, Dopamine/physiology , Receptors, Purinergic P1/physiology , Signal Transduction/physiology
5.
Mini Rev Med Chem ; 9(12): 1429-38, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19929816

ABSTRACT

The role that the tridecapeptide neurotensin (NT) plays in the modulation of the aminoacidergic transmission is analyzed in different rat brain regions. NT exerts its effects through the activation of different receptor subtypes, NTR1, NTR2 and NTR3. The contribution of NTR1 receptor in modulating and reinforcing glutamate signalling will be shown including the involvement of interactions between NT and N-methyl-D-aspartate (NMDA) receptors. Extracellular accumulation of glutamate and the excessive activation of glutamate receptors, in particular NMDA receptors, is known to represent an important factor in the induction of glutamate-mediated neuronal damage occurring in Parkinson's disease and in pathologic events such as hypoxia and ischemia. An enhancing action of NT on glutamate-induced neurodegenerative effects is shown and NTR1 receptor antagonists could therefore become novel pharmaceutics in the treatment of neurodegenerative disease.


Subject(s)
Neurodegenerative Diseases/drug therapy , Neurotensin/pharmacology , Receptors, Neurotensin/antagonists & inhibitors , Amino Acid Sequence , Animals , Brain/metabolism , Glutamic Acid/metabolism , Glutamic Acid/toxicity , Neurotensin/chemistry , Neurotensin/physiology , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Neurotensin/classification , Receptors, Neurotensin/metabolism , Signal Transduction
6.
J Neural Transm (Vienna) ; 116(8): 1017-27, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19533296

ABSTRACT

The aim of the present review is to summarize integrated neurochemical, morphological and neurobehavioral evidence, in particular from our laboratory, which emphasize the short- and long-term consequences of prenatal exposure to the cannabinoid receptor agonist WIN55,212-2 on rat glutamate transmission and cognitive functions. The results obtained provide evidence that maternal exposure to WIN55,212-2 induces an impairment of cognitive capacities in the offspring. This impairment is associated with alterations of cortical and hippocampal glutamate outflow, cortical neuron morphology and hippocampal long-term potentiation. These findings are in line with clinical data showing that the consumption of marijuana by women during pregnancy has negative consequences on the cognitive functions of their children. Thus, although it is difficult and sometimes misleading to extrapolate findings obtained from animal models to humans, the possibility that an alteration of glutamate transmission might underlie, at least in part, some of the cognitive deficits affecting the offspring of marijuana users, is supported.


Subject(s)
Benzoxazines/pharmacology , Cannabinoid Receptor Agonists , Cognition/drug effects , Glutamic Acid/metabolism , Morpholines/pharmacology , Naphthalenes/pharmacology , Prenatal Exposure Delayed Effects , Synaptic Transmission/drug effects , Aging , Animals , Cannabinoids/pharmacology , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Cognition/physiology , Emotions/drug effects , Emotions/physiology , Female , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/physiology , Humans , Learning/drug effects , Learning/physiology , Neurons/cytology , Neurons/drug effects , Neurons/physiology , Pregnancy , Rats , Synaptic Transmission/physiology , Time Factors
7.
Brain Res Rev ; 58(2): 415-52, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18222544

ABSTRACT

Future therapies for diseases associated with altered dopaminergic signaling, including Parkinson's disease, schizophrenia and drug addiction or drug dependence may substantially build on the existence of intramembrane receptor-receptor interactions within dopamine receptor containing receptor mosaics (RM; dimeric or high-order receptor oligomers) where it is believed that the dopamine D(2) receptor may operate as the 'hub receptor' within these complexes. The constitutive adenosine A(2A)/dopamine D(2) RM, located in the dorsal striato-pallidal GABA neurons, are of particular interest in view of the demonstrated antagonistic A(2A)/D(2) interaction within these heteromers; an interaction that led to the suggestion and later demonstration that A(2A) antagonists could be used as novel anti-Parkinsonian drugs. Based on the likely existence of A(2A)/D(2)/mGluR5 RM located both extrasynaptically on striato-pallidal GABA neurons and on cortico-striatal glutamate terminals, multiple receptor-receptor interactions within this RM involving synergism between A(2A)/mGluR5 to counteract D(2) signaling, has led to the proposal of using combined mGluR5 and A(2A) antagonists as a future anti-Parkinsonian treatment. Based on the same RM in the ventral striato-pallidal GABA pathways, novel strategies for the treatment of schizophrenia, building on the idea that A(2A) agonists and/or mGluR5 agonists will help reduce the increased dopaminergic signaling associated with this disease, have been suggested. Such treatment may ensure the proper glutamatergic drive from the mediodorsal thalamic nucleus to the prefrontal cortex, one which is believed to be reduced in schizophrenia due to a dominance of D(2)-like signaling in the ventral striatum. Recently, A(2A) receptors also have been shown to counteract the locomotor and sensitizing actions of cocaine and increases in A(2A) receptors have also been observed in the nucleus accumbens after extended cocaine self-administration, probably representing a compensatory up-regulation to counteract the cocaine-induced increases in dopamine D(2) and D(3) signaling. Therefore, A(2A) agonists, through antagonizing D(2) and D(3) signaling within A(2A)/D(2) and A(2A)/D(3) RM heteromers in the nucleus accumbens, may be found useful as a treatment for cocaine dependence. Furthermore, antagonistic cannabinoid CB(1)/D(2) interactions requiring A(2A) receptors have also been discovered and possibly operate in CB(1)/D(2)/A(2A) RM located principally on striatal glutamate terminals but also on some ventral striato-pallidal GABA neurons, thereby opening up a new mechanism for the integration of endocannabinoid, DA and adenosine mediated signals. Thus, A(2A), mGluR5 and/or CB(1) receptors can form integrative units with D(2) receptors within RM displaying different compositions, topography and localization. Also galaninR/5-HT(1A) RM probably participates in the transmission of the ascending 5-hydroxytryptamine neurons, where galanin receptors antagonize 5-HT(1A) recognition and signaling. Subtype specific galanin receptor antagonists may therefore represent novel antidepressant drugs. These results suggest the importance of a complete understanding of the function of these RM with regard to disease. Ultimately receptor-receptor interactions within RM that modify dopaminergic and serotonergic signaling may give new strategies for treatment of a wide range of diseases associated with altered dopaminergic and serotonergic signaling.


Subject(s)
Cell Communication/physiology , Neurons/physiology , Psychopharmacology , Receptors, Cell Surface/physiology , Animals , Cell Communication/drug effects , Humans , Neurons/cytology , Neurons/drug effects , Receptors, Cell Surface/classification , Receptors, Cell Surface/drug effects
8.
Prog Neurobiol ; 83(2): 92-109, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17673354

ABSTRACT

The extracellular accumulation of glutamate and the excessive activation of glutamate receptors, in particular N-methyl-D-aspartate (NMDA) receptors, have been postulated to contribute to the neuronal cell death associated with chronic neurodegenerative disorders such as Parkinson's disease. Findings are reviewed indicating that the tridecaptide neurotensin (NT) via activation of NT receptor subtype 1 (NTS1) promotes and reinforces endogenous glutamate signalling in discrete brain regions. The increase of striatal, nigral and cortical glutamate outflow by NT and the enhancement of NMDA receptor function by a NTS1/NMDA interaction that involves the activation of protein kinase C may favour the depolarization of NTS1 containing neurons and the entry of calcium. These results strengthen the hypothesis that NT may be involved in the amplification of glutamate-induced neurotoxicity in mesencephalic dopamine and cortical neurons. The mechanisms involved may include also antagonistic NTS1/D2 interactions in the cortico-striatal glutamate terminals and in the nigral DA cell bodies and dendrites as well as in the nigro-striatal DA terminals. The possible increase in NT levels in the basal ganglia under pathological conditions leading to the NTS1 enhancement of glutamate signalling may contribute to the neurodegeneration of the nigro-striatal dopaminergic neurons found in Parkinson's disease, especially in view of the high density of NTS1 receptors in these neurons. The use of selective NTS1 antagonists together with conventional drug treatments could provide a novel therapeutic approach for treatment of Parkinson's disease.


Subject(s)
Brain/physiopathology , Receptors, Glutamate/physiology , Receptors, Neurotensin/physiology , Synaptic Transmission/physiology , Animals , Brain/drug effects , Brain/physiology , Glutamic Acid/physiology , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/physiopathology , Neurotransmitter Agents/therapeutic use , Rats , Receptor Cross-Talk/physiology , Receptors, Neurotensin/drug effects , Signal Transduction/physiology
9.
J Neural Transm (Vienna) ; 114(1): 105-13, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16983483

ABSTRACT

Using mono and dualprobe(s) microdialysis in the basal ganglia of the freely moving rat evidence has been obtained that neurotensin (NT) in threshold concentrations can counteract the D(2) agonist (intrastriatally perfused) induced inhibition of striatal dopamine (DA) release and of pallidal GABA release from the striato-pallidal GABA pathway, effects that are blocked by a NTR(1) antagonist SR48692. These results indicate the existence of antagonistic intramembrane NTR/D(2) receptor interactions in the striatal DA terminals and in the somato-dendritic regions of the striato-pallidal GABA neurons. By the NT-induced reduction of the D(2) mediated signals at the striatal pre- and postjunctional level DA transmission is switched towards a D(1) mediated transmission leading to increased activity in the striatopallidal and striatonigral GABA pathways. The former action will contribute to the motor inhibition and catalepsy found with NT treatment and underlies the use of NT receptor antagonists as a treatment strategy for Parkinson's disease. Nigral NT by an antagonistic NTR/D(2) receptor interaction in the DA cell body and dendrites may also increase nigral DA release leading to a D(2) mediated inhibition of the nigrothalamic GABA pathway. Such an effect, will instead result in antiparkinsonian actions. Thus, increases in NT transmission will have different consequences for the motor system depending upon where in the basal ganglia the increase takes place.


Subject(s)
Basal Ganglia/metabolism , Neural Pathways/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Neurotensin/metabolism , Animals , Basal Ganglia/drug effects , Dopamine/metabolism , Humans , Neural Inhibition/drug effects , Neural Inhibition/physiology , Neural Pathways/drug effects , Neurotensin/metabolism , Receptor Cross-Talk/drug effects , Receptor Cross-Talk/physiology , Receptors, Dopamine D2/drug effects , Receptors, Neurotensin/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism
10.
J Neural Transm (Vienna) ; 114(1): 49-75, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17066251

ABSTRACT

In 1980/81 Agnati and Fuxe introduced the concept of intramembrane receptor-receptor interactions and presented the first experimental observations for their existence in crude membrane preparations. The second step was their introduction of the receptor mosaic hypothesis of the engram in 1982. The third step was their proposal that the existence of intramembrane receptor-receptor interactions made possible the integration of synaptic (WT) and extrasynaptic (VT) signals. With the discovery of the intramembrane receptor-receptor interactions with the likely formation of receptor aggregates of multiple receptors, so called receptor mosaics, the entire decoding process becomes a branched process already at the receptor level in the surface membrane. Recent developments indicate the relevance of cooperativity in intramembrane receptor-receptor interactions namely the presence of regulated cooperativity via receptor-receptor interactions in receptor mosaics (RM) built up of the same type of receptor (homo-oligomers) or of subtypes of the same receptor (RM type1). The receptor-receptor interactions will to a large extent determine the various conformational states of the receptors and their operation will be dependent on the receptor composition (stoichiometry), the spatial organization (topography) and order of receptor activation in the RM. The biochemical and functional integrative implications of the receptor-receptor interactions are outlined and long-lived heteromeric receptor complexes with frozen RM in various nerve cell systems may play an essential role in learning, memory and retrieval processes. Intramembrane receptor-receptor interactions in the brain have given rise to novel strategies for treatment of Parkinson's disease (A2A and mGluR5 receptor antagonists), schizophrenia (A2A and mGluR5 agonists) and depression (galanin receptor antagonists). The A2A/D2, A2A/D3 and A2A/mGluR5 heteromers and heteromeric complexes with their possible participation in different types of RM are described in detail, especially in the cortico-striatal glutamate synapse and its extrasynaptic components, together with a postulated existence of A2A/D4 heteromers. Finally, the impact of intramembrane receptor-receptor interactions in molecular medicine is discussed outside the brain with focus on the endocrine, the cardiovascular and the immune systems.


Subject(s)
Brain/physiology , Cell Membrane/physiology , Neurons/physiology , Receptor Cross-Talk/physiology , Receptors, Neurotransmitter/physiology , Signal Transduction/physiology , Animals , Cell Membrane/chemistry , Cell Membrane/ultrastructure , Humans , Neurons/chemistry , Neurons/ultrastructure , Neurotransmitter Agents/physiology , Protein Subunits/chemistry , Protein Subunits/physiology , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/physiology , Receptors, Neurotransmitter/chemistry
11.
Neurochem Int ; 49(6): 568-76, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16777266

ABSTRACT

The effects of prenatal exposure to the cannabinoid receptor agonist WIN 55,212-2 (0.5 mg/kg s.c.), alone or in combination with carbon monoxide, on extracellular glutamate levels in primary rat cerebral cortical neuronal cultures, were investigated. Dam weight gain, pregnancy length and litter size at birth were not affected by prenatal treatment with WIN 55,212-2 and carbon monoxide alone or in combination. Basal and K(+)-evoked extracellular glutamate levels were reduced in cortical cultures from pups born to mothers exposed to WIN 55,212-2 and carbon monoxide alone or in combination compared to cultures from rats born to vehicle-treated mothers. In cultures obtained from rats exposed to vehicle or carbon monoxide alone during gestation, WIN 55,212-2 (0.01-100 nM) increased extracellular glutamate levels, displaying a bell-shaped concentration-response curve. In cultures from rats born to mothers exposed to WIN 55,212-2 alone or in combination with carbon monoxide the WIN 55,212-2 ( 1 nM)-induced increase in extracellular glutamate levels was lower than that observed in cultures from rats born to vehicle-treated mothers and similar at those observed at 10 and 100 nM concentrations. The selective CB1 receptor antagonist SR141716A (10 nM) counteracted the WIN 55,212-2-induced increase in extracellular glutamate levels in cultures exposed to vehicle or carbon monoxide during gestation, but failed to antagonise it in cultures from rats born to mothers exposed to WIN 55,212-2 alone or in combination with carbon monoxide. These findings provide evidence that prenatal exposure to the cannabinoid receptor agonist WIN 55,212-2 and carbon monoxide, alone or in combination, is associated with an impairment in cortical glutamatergic transmission. It could be speculated that such detrimental effects might be involved in the reported deficit in learning and memory associated with prenatal marijuana exposure.


Subject(s)
Cannabinoid Receptor Agonists , Carbon Monoxide/pharmacology , Cerebral Cortex/metabolism , Extracellular Space/metabolism , Glutamates/metabolism , Morpholines/pharmacology , Naphthalenes/pharmacology , Animals , Benzoxazines , Cannabinoid Receptor Antagonists , Carboxyhemoglobin/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Extracellular Space/drug effects , Female , Piperidines/pharmacology , Potassium/pharmacology , Pregnancy , Pyrazoles/pharmacology , Rats , Rats, Wistar , Reproduction/physiology , Rimonabant
12.
Parkinsonism Relat Disord ; 10(5): 273-80, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15196505

ABSTRACT

Behavioral and microdialysis studies have been performed on antagonistic A(2A)/D(2) interactions in animal models of Parkinson's Disease. The behavioral analysis involved studies on locomotor activity in reserpinized mice, haloperidol-induced catalepsy in rats and rotational behavior in rats with unilateral 6-OHDA lesions of the ascending DA pathways (Ungerstedt model). Dual probe microdialysis studies were indirectly performed on the striatopallidal GABA neurons by studying extracellular glutamate levels in the striatum and globus pallidus of the awake freely moving rat. The striatum was perfused with A(2A) and/or D(2) agonists via reverse microdialysis. The results show that the A(2A) antagonists SCH58261 and KF17837 can increase locomotor activity in reserpinized mice and produce contralateral rotational behavior only after administration of subthreshold doses of l-DOPA or the D(2) like agonist quinpirole. Furthermore, antagonizing the A(2A) receptor (R) reduced haloperidol induced catalepsy. The behavioral results underline the view that A(2A) antagonists act by blocking A(2A) R in A(2A)/D(2) heterodimers where A(2A) R inhibits the D(2) R transduction and D(2) inhibits the adenylate cyclase (AC) activated by A(2A) R. The microdialysis studies show that the A(2A) agonist CGS21680 striatally coperfused with the D(2) agonist quinpirole more potently counteract the D(2) agonist (quinpirole) induced reduction of pallidal glutamate levels in the DA denervated vs the control striatum indicating an enhancement of the inhibitory A(2A)/D(2) interaction. In the DA denervated but not in the control striatum the A(2A) agonist CGS21680 could strongly increase striatal glutamate levels, indicating an increased receptor signaling in the A(2A) R located on the striatal glutamate terminals, where also D(2) like R exist, here probably as D(4). Thus, the signaling of this A(2A) R may be set free by the loss of D(4) tone on the AC activated by A(2A) in this postulated A(2A)/D(4) heteromer on the glutamate terminals. Taken together, the results indicate that the antiparkinsonian actions of A(2A) antagonists probably are produced by blockade of A(2A) R in the A(2A)/D(2) heterodimers mainly located in the striatopallidal GABA neurons.


Subject(s)
Corpus Striatum/metabolism , Neuronal Plasticity/physiology , Parkinson Disease/metabolism , Receptor, Adenosine A2A/metabolism , Receptors, Dopamine D2/metabolism , Adenosine A2 Receptor Antagonists , Animals , Corpus Striatum/drug effects , Dopamine D2 Receptor Antagonists , Dose-Response Relationship, Drug , Female , Levodopa/pharmacology , Male , Mice , Nerve Net/drug effects , Nerve Net/metabolism , Neuronal Plasticity/drug effects , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Triazoles/pharmacology
13.
Neuroscience ; 124(2): 367-75, 2004.
Article in English | MEDLINE | ID: mdl-14980386

ABSTRACT

The aim of the present in vivo microdialysis study was to investigate whether prenatal exposure to the CB(1) receptor agonist WIN55,212-2 mesylate (WIN; (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinyl-methyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone), at a dose of 0.5 mg/kg (s.c. from the fifth to the 20th day of gestation), that causes neither malformations nor overt signs of toxicity, influences cortical glutamate extracellular levels in adult (90-day old) rats. Dam weight gain, pregnancy length and litter size at birth were not significantly affected by prenatal treatment with WIN. Basal and K(+)-evoked dialysate glutamate levels were lower in the cerebral cortex of adult rats exposed to WIN during gestation than in those born from vehicle-treated mothers. In both group of animals WIN (0.1 mg/kg, i.p.) increased dialysate glutamate levels. However, while the blockade of the CB1 receptors with the selective receptor antagonist SR141716A completely counteracted the WIN-induced increase in those rats exposed to vehicle during gestation, it failed to antagonise the increase in those born from WIN-treated dams. These findings suggest that prenatal exposure to the CB1 receptor agonist WIN, at a concentration which is not associated with gross malformations and/or overt signs of toxicity, induces permanent alterations in cortical glutamatergic function. The possibility that these effects might underlie, at least in part, some of the cognitive deficits affecting the offspring of marijuana users is discussed.


Subject(s)
Cannabinoids/agonists , Cerebral Cortex/drug effects , Glutamic Acid/metabolism , Morpholines/pharmacology , Naphthalenes/pharmacology , Prenatal Exposure Delayed Effects , Time , Analysis of Variance , Animals , Animals, Newborn , Benzoxazines , Calcium/pharmacology , Cannabinoids/antagonists & inhibitors , Cerebral Cortex/metabolism , Dose-Response Relationship, Drug , Drug Interactions , Extracellular Space/drug effects , Female , Male , Microdialysis/methods , Piperidines/pharmacology , Potassium/pharmacology , Pregnancy , Pyrazoles/pharmacology , Rats , Rimonabant , Time Factors , Wakefulness
14.
J Neurosci Res ; 70(6): 766-73, 2002 Dec 15.
Article in English | MEDLINE | ID: mdl-12444598

ABSTRACT

The tridecapeptide neurotensin has been demonstrated to increase glutamate release in discrete rat brain regions, leading to the hypothesis of a possible involvement of the peptide in neurodegenerative pathologies. The role of neurotensin in modulating glutamate excitotoxicity and the possible neuroprotective action of the neurotensin receptor antagonist SR48692 were investigated in primary cultures of mesencephalic neurons by measuring [(3)H]dopamine uptake and tyrosine hydroxylase immunocytochemistry 24 hr after glutamate treatment. The exposure to glutamate (30 and 100 microM, 10 min) decreased [(3)H]dopamine uptake into mesencephalic neurons. Neurotensin (10 and 100 nM), added before glutamate (30 microM) exposure, significantly enhanced the glutamate-induced reduction of [(3)H]dopamine uptake. In addition, the peptide (10 nM) also significantly enhanced the effect of 100 microM glutamate. The effects of neurotensin were counteracted by the neurotensin receptor antagonist SR48692 (100 nM) and by the protein kinase C inhibitor calphostin C. The exposure to 100 microM, but not 30 microM, glutamate significantly reduced the number of tyrosine hydroxylase-immunoreactive cells, and neurotensin (10 nM) significantly enhanced this effect. SR48692 (100 nM) prevented the neurotensin-induced action. These findings support the view of a possible pathophysiological role of neurotensin in mesencephalic dopamine neuronal function. Furthermore, selective neurotensin antagonists in combination with conventional drug treatments could provide a novel therapeutic approach for the treatment of neurodegenerative disorders, such as Parkinson's disease.


Subject(s)
Glutamic Acid/toxicity , Nerve Degeneration/physiopathology , Neurons/drug effects , Neurotensin/pharmacology , Animals , Cells, Cultured , Dopamine/metabolism , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Immunohistochemistry , Mesencephalon/cytology , Mesencephalon/drug effects , Mesencephalon/metabolism , Naphthalenes/pharmacology , Nerve Degeneration/pathology , Neurons/cytology , Neurons/metabolism , Neuroprotective Agents/pharmacology , Pyrazoles/pharmacology , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Neurotensin/antagonists & inhibitors , Tyrosine 3-Monooxygenase/metabolism
15.
Med Lav ; 93(3): 267-78, 2002.
Article in Italian | MEDLINE | ID: mdl-12197277

ABSTRACT

OBJECTIVES: Mercury (Hg), one of the most diffused and hazardous organ-specific environmental contaminants, exists in a wide variety of physical and chemical states, each of which with unique characteristics of target organ specificity. Exposure to Hg vapour and to organic mercurials specifically affects the CNS, while the kidney is the target organ for inorganic Hg compounds. Despite the increasing number of studies, the molecular bases of the nephrotoxic potential of Hg has not, up to now, been clarified, even if there is evidence suggesting that the ability of the metal to interact with proteins (thiol groups) or to generate oxygen radicals may play a major role. Within this context, the aim of the present study was to investigate, in vitro, the mechanism(s) of the early nephrotoxic potential of mercury chloride (HgCl2), one of the most diffused and biologically active mercury (Hg2+) compounds. For this purpose, two kidney-derived in vitro systems (the MDCK and the LLC-PK1 cell lines) were tested for their sensitivity to the salt, and MDCK was chosen as the most suitable in vitro model for our study. As possible biological markers of the organ-specific toxicity of the metal we analysed: i) critical biochemical parameters related to oxidative stress conditions (effect of Hg2+ on the anti-oxidant status of the cell), and ii) gap-junctional function (GJIC). METHODS: Classical toxicity tests (MTT and NR) were used for assessing the sensitivity (IC50) of LLP-CK1 and MDCK cell lines to the mercuric salt. Complete solubilisation of the salt in the culture media was verified by inductively coupled plasma mass spectrometry (ICP-MS). The influence of the metal on cell growth rate and viability were evaluated by conventional proliferation assays. For the following mechanistic studies, cells were exposed for different time periods (4 to 72 hours) to non-cytotoxic (0.1-50 microM) HgCl2 concentrations. The biochemical analysis of the pro-oxidant properties of the mercuric compound was performed by the measurement of anti-oxidant cellular defences against H2O2 [catalase (Cat), glutathione peroxidase (Gpx), and total glutathione (GSH)]. The influence of the metal on the GJIC capacity of MDCK cells was assessed by the "microinjection/dye-coupling" assay. RESULTS: Among the two kidney-derived in vitro systems, MDCK cell line was the most specifically sensitive to the toxic effect of HgCl2: it was, consequently, chosen as a "tubular cell model" for the following experimental steps. Tested for various time periods at increasing concentrations, the HgCl2 effect on MDCK cell proliferation and viability was found to be time- and dose-related. For concentrations < or = 50 microM, HgCl2 inhibits MDCK cell growth rate, being this effect significant (> 50% in respect to untreated controls) from the 24th from the beginning of the treatment, while, for concentrations > 50 microM, the metal causes cell death. Concerning the influence of HgCl2 on MDCK anti-oxidant defences, the most interesting results were obtained by analysing the influence of the mercury salt on the GSH cell content and Gpx activity. Both were, in fact, significantly affected by the presence of the mercury ion. HgCl2 also induced a rapid, dose- and time-related inhibitory effect on the GJIC capacity of the cells. CONCLUSIONS: Even if further investigations are needed to better clarify the possible causal relationship between our findings, they indicate that: a) MDCK cells represent a suitable in vitro model for the study of Hg nephrotoxicity; b) GJIC function is, among those considered in our study, one of the most sensitive biological endpoints for investigating the mechanism(s) of Hg2+ specific toxicity.


Subject(s)
Kidney/drug effects , Mercuric Chloride/pharmacology , Animals , Catalase/metabolism , Cell Communication/drug effects , Cell Division/drug effects , Cell Line/drug effects , Dogs , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Fluorescent Dyes/analysis , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Isoquinolines/analysis , Kidney/cytology , Mercuric Chloride/administration & dosage , Mercuric Chloride/toxicity , Oxidation-Reduction , Oxidative Stress , Sensitivity and Specificity , Solubility , Swine
16.
Toxicol In Vitro ; 16(4): 457-65, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12110286

ABSTRACT

In this study, the early nephrotoxic potential of mercuric chloride (HgCl(2)) has been evaluated in vitro, by exposing a renal-derived cell system, the tubular epithelial Madin-Darby canine kidney (MDCK) cell line, to the presence of increasing HgCl(2) concentrations (0.1-100 microM) for different periods of time (from 4 to 72 h). As possible biological markers of the tubular-specific toxicity of HgCl(2) in exposed-MDCK cultures we analysed: (i) critical biochemical parameters related to oxidative stress conditions and (ii) gap-junctional function (GJIC). HgCl(2) cytotoxicity was evaluated by cell-density assay. The biochemical analysis of the pro-oxidant properties of the mercuric ion (Hg(2+)) was performed by evaluating the effect of the metal salt on the antioxidant status of the MDCK cells. The cell glutathione (GSH) content and the activity of glutathione peroxidase (Gpx) and catalase (Cat), two enzymes engaged in the H(2)O(2) degradation, were quantified. HgCl(2) influence on MDCK GJIC was analysed by the microinjection/dye-transfer assay. HgCl(2)-induced morphological changes in MDCK cells were also taken into account. Our results, proving that subcytotoxic (0.1-10 microM) HgCl(2) concentrations affect either the antioxidant defences of MDCK cells or their GJIC, indicate these critical functions as suitable biological targets of early mercury-induced tubular cell injury.


Subject(s)
Cell Communication/drug effects , Disinfectants/toxicity , Gap Junctions/physiology , Kidney Tubules/cytology , Mercuric Chloride/toxicity , Oxidative Stress , Animals , Antioxidants , Cell Line , Dogs , Dose-Response Relationship, Drug , Gap Junctions/drug effects , Glutathione Peroxidase/pharmacology
17.
J Neurosci Res ; 66(2): 298-302, 2001 Oct 15.
Article in English | MEDLINE | ID: mdl-11592127

ABSTRACT

The effects of the cannabinoid receptor agonist WIN 55,212-2 (0.1-5 mg/kg i.p.) on endogenous extracellular gamma-aminobutyric acid (GABA) levels in the cerebral cortex of the awake rat was investigated by using microdialysis. WIN 55,212-2 (1 and 5 mg/kg i.p.) was associated with a concentration-dependent decrease in dialysate GABA levels (-16% +/- 4% and -26% +/- 4% of basal values, respectively). The WIN 55,212-2 (5 mg/kg i.p.) induced-inhibition was counteracted by a dose (0.1 mg/kg i.p.) of the CB(1) receptor antagonist SR141716A, which by itself was without effect on cortical GABA levels. These findings suggest that cannabinoids decrease cortical GABA levels in vivo, an action that might underlie some of the cognitive and behavioral effects of acute exposure to marijuana.


Subject(s)
Morpholines/pharmacology , Naphthalenes/pharmacology , Prefrontal Cortex/drug effects , Receptors, Drug/agonists , gamma-Aminobutyric Acid/metabolism , Animals , Benzoxazines , Dose-Response Relationship, Drug , Drug Interactions , Microdialysis , Piperidines/pharmacology , Prefrontal Cortex/metabolism , Pyrazoles/pharmacology , Rats , Receptors, Cannabinoid , Rimonabant , Wakefulness
18.
J Neurochem ; 78(5): 929-39, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11553667

ABSTRACT

The effect of gamma-hydroxybutyric acid on extracellular glutamate levels in the hippocampus was studied by microdialysis in freely moving rats and in isolated hippocampal synaptosomes. Intra-hippocampal (CA1) perfusion with gamma-hydroxybutyric acid (10 nM-1 mM) concentration-dependently influenced glutamate levels: gamma-hydroxybutyric acid (100 and 500 nM) increased glutamate levels; 100 and 300 microM concentrations were ineffective; whereas the highest 1 mM concentration reduced local glutamate levels. The stimulant effect of gamma-hydroxybutyric acid (100 nM) was suppressed by the locally co-perfused gamma-hydroxybutyric acid receptor antagonist NCS-382 (10 microM) but not by the GABA(B) receptor antagonist CGP-35348 (500 microM). Furthermore, the gamma-hydroxybutyric acid (1 mM)-induced reduction in CA1 glutamate levels was counteracted by NCS-382 (10 microM), and it was also reversed into an increase by CGP-35348. Given alone, neither NCS-382 nor CGP-35348 modified glutamate levels. In hippocampal synaptosomes, gamma-hydroxybutyric acid (50 and 100 nM) enhanced both the spontaneous and K(+)-evoked glutamate efflux, respectively, both effects being counteracted by NCS-382 (100 nM), but not by CGP-35348 (100 microM). These findings indicate that gamma-hydroxybutyric acid exerts a concentration-dependent regulation of hippocampal glutamate transmission via two opposing mechanisms, whereby a direct gamma-hydroxybutyric acid receptor mediated facilitation is observed at nanomolar gamma-hydroxybutyric acid concentrations, and an indirect GABA(B) receptor mediated inhibition predominates at millimolar concentrations.


Subject(s)
Anesthetics, Intravenous/pharmacology , Glutamic Acid/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Sodium Oxybate/pharmacology , Animals , Anticonvulsants/pharmacology , Benzocycloheptenes/pharmacology , Calcium/pharmacology , Consciousness/physiology , Extracellular Space/metabolism , GABA Antagonists/pharmacology , In Vitro Techniques , Male , Microdialysis , Organophosphorus Compounds/pharmacology , Potassium/pharmacology , Rats , Rats, Sprague-Dawley , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Synaptosomes/drug effects , Synaptosomes/metabolism , Tetrodotoxin/pharmacology
19.
Cereb Cortex ; 11(8): 728-33, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11459762

ABSTRACT

The effects of the cannabinoid receptor agonist WIN 55,212-2 on endogenous extracellular glutamate levels in the prefrontal cortex of the awake rat and in primary cultures of rat cerebral cortex neurons were investigated. In the prefrontal cortex WIN 55,212-2 (0.1 and 1 mg/kg i.p.) increased dialysate glutamate levels from of the awake rat, while the lower (0.01 mg/kg) and the higher (2 mg/kg) doses were ineffective. Furthermore, the WIN 55,212-2 (0.1 mg/kg)- induced increase of dialysate glutamate levels was counteracted by pretreatment with the selective CB(1) receptor antagonist SR141716A (0.1 mg/kg i.p.) and by the local perfusion with a low-calcium Ringer solution (Ca(2+) 0.2 mM). In primary cultures of rat cerebral cortex neurons, WIN 55,212-2 (0.01--100 nM) increased extracellular glutamate levels, displaying a bell-shaped concentration-response curve. The facilitatory effect of WIN 55,212-2 (1 nM) was fully counteracted by SR141716A (10 nM), by the replacement of the normal Krebs Ringer-bicarbonate buffer with a low Ca(2+) medium (0.2 mM) and by the IP(3) receptor antagonist xestospongin C (1 microM). These in vivo and in vitro findings suggest an increase in cortical glutamatergic transmission by CB(1) receptors, an effect that may underlie some of the psychoactive and behavioural actions of acute exposure to marijuana.


Subject(s)
Cannabinoids/pharmacology , Cerebral Cortex/drug effects , Glutamic Acid/physiology , Morpholines/pharmacology , Naphthalenes/pharmacology , Receptors, Drug/agonists , Synaptic Transmission/drug effects , Animals , Benzoxazines , Calcium/physiology , Calcium Channels/drug effects , Calcium Channels/metabolism , Cannabinoids/antagonists & inhibitors , Cells, Cultured , Cerebral Cortex/metabolism , Culture Media , Extracellular Space/drug effects , Extracellular Space/metabolism , Glutamic Acid/metabolism , Male , Microdialysis , Piperidines/pharmacology , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Cannabinoid , Receptors, Drug/antagonists & inhibitors , Rimonabant
20.
Peptides ; 22(8): 1229-34, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11457515

ABSTRACT

The present article reviews our recent biochemical and microdialysis studies showing the evidence for an antagonistic CCK(B)/D(2) receptor interaction in the regulation of dopaminergic transmission in the nucleus accumbens and GABAergic transmission in the ipsilateral ventral pallidum. Since the nucleus accumbens plays a crucial role in regulating the output from the limbic system and consequently motivation, it may be speculated that a dysregulation of this receptor interaction may have consequences in a wide range of central nervous system disorders.


Subject(s)
Cholecystokinin/metabolism , Dopamine/metabolism , Nucleus Accumbens/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Central Nervous System Diseases/metabolism , Humans , Kinetics , Models, Biological , Nootropic Agents/pharmacology , Palladium/metabolism , Protein Binding , Rats , Sincalide/analogs & derivatives , Sincalide/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...