Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 32(4): 045709, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33045683

ABSTRACT

There are many simulation studies of mechanical properties of graphene nanoribbons (GNR), but there is a lack of agreement regarding elastic and plastic behavior. In this paper we aim to analyze mechanical properties of finite-size GNR, including elastic modulus and fracture, as a function of ribbon size. We present classical molecular dynamics simulations for three different empirical potentials which are often used for graphene simulations: AIREBO, REBO-scr and REAXFF. Ribbons with and without H-passivation at the borders are considered, and the effects of strain rate and different boundaries are also explored. We focus on zig-zag GNR, but also include some armchair GNR examples. Results are strongly dependent on the empirical potential employed. Elastic modulus under uniaxial tension can depend on ribbon size, unlike predictions from continuum-scale models and from some atomistic simulations, and fracture strain and progress vary significantly amongst the simulated potentials. Because of that, we have also carried out quasi-static ab-initio simulations for a selected size, and find that the fracture process is not sudden, instead the wave function changes from Blöch states to a strong interaction between localized waves, which decreases continuously with distance. All potentials show good agreement with DFT in the linear elastic regime, but only the REBO-scr potential shows reasonable agreement with DFT both in the nonlinear elastic and fracture regimes. This would allow more reliable simulations of GNRs and GNR-based nanostructures, to help interpreting experimental results and for future technological applications.

2.
Phys Chem Chem Phys ; 21(36): 20118-20131, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31482890

ABSTRACT

A classical interatomic potential for iron/iron-fluoride systems is developed in the framework of the charge optimized many-body (COMB) potential. This interatomic potential takes into consideration the effects of charge transfer and many-body interactions depending on the chemical environment. The potential is fitted to a training set composed of both experimental and ab initio results of the cohesive energies of several Fe and FeF2 crystal phases, the two fluorine molecules F2 and the F2-1 dissociation energy curve, the Fe and FeF2 lattice parameters of the ground state crystalline phase, and the elastic constants of the body centered cubic Fe structure. The potential is tested in an NVT ensemble for different initial structural configurations as the crystal ground state phases, F2 molecules, iron clusters, and iron nanospheres. In particular, we model the FeF2/Fe bilayer and multilayer interfaces, as well as a system of square FeF2 nanowires immersed in an iron solid. It has been shown that there exists a reordering of the atomic positions for F and Fe atoms at the interface zone; this rearrangement leads to an increase in the charge transfer among the atoms that make the interface and put forward a possible mechanism of the exchange bias origin based on asymmetric electric charge transfer in the different spin channels.

3.
Phys Chem Chem Phys ; 21(8): 4584-4593, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30742146

ABSTRACT

Interest in low dimensional magnetic systems has been growing due to the novel and dramatically differentiated effects of their physical properties, which give them special behaviors and uses in biomedical, environmental and technological fields. In this study we report extensive first-principles calculations on the geometric optimization as well as electronic, magnetic, mechanical and thermal properties of several quasi one-dimensional core/shell nanowires: Cu/Fe3O4, Co/Fe3O4, and CoO/Fe3O4. The main focus lies on the quantum confinement effects as well as on the effect of the interaction between the ferrimagnetic semiconductor shell material (magnetite nanotube) and core compounds with differentiated magnetic behavior such as (i) a ferromagnetic material (Co), (ii) an antiferromagnetic transition metal oxide (CoO) and (iii) a non-magnetic simple metal (Cu). The mechanical properties of the related nanosystems are studied through the effects of axial deformations, and their thermal behavior is evaluated by considering the electronic contribution of each sample to the heat capacity, and some potential technological applications are suggested.

4.
J Phys Condens Matter ; 25(21): 216003, 2013 May 29.
Article in English | MEDLINE | ID: mdl-23644392

ABSTRACT

Accurate first-principle calculations on bimetallic cobalt-copper clusters of up to six atoms (Pérez et al 2012 J. Nanopart. Res. 14 933) revealed a close similarity of the ground-state magnetic properties to the ultimate jellium model, provided that a 2D to 3D geometric transition was invoked. We discuss this relationship in terms of partial occupancies of the valence electrons in both cases, with the jellium results described by nonperturbative spherical wavefunctions. Based upon this, we propose a scheme to predict magnetic properties of cobalt-copper clusters of up to twenty atoms using arguments of dimensionality and charge localization, and confirm some of these results with other independent density-functional calculations and experimental available data. The comparison with experiments is carried out for neutral and singly ionized cobalt clusters. Furthermore, a many-body tight-binding pseudopotential is used with Monte Carlo techniques to verify the stability of these new first-principle solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...