Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Curr Opin Insect Sci ; 60: 101110, 2023 12.
Article in English | MEDLINE | ID: mdl-37660835

ABSTRACT

Mosquito surveillance is essential to successfully control and eliminate mosquito-borne diseases. Yet, it is often done by numerous organizations with little collaboration, incomplete understanding of existing gaps, and limited long-term vision. There is a clear disconnect between entomological and epidemiological indices, with entomological data informing control efforts inadequately. Here, we discuss current mosquito surveillance practises across the heterogeneous disease landscape in Africa. We advocate for the development of mosquito surveillance strategic plans to increase the impact and functionality of mosquito surveillance. We urge for a proactive approach to set up centralized mosquito data systems under the custodian of national governments, focus on epidemiologically relevant mosquito data, and increase the robustness of mosquito surveillance using a more spatially explicit sampling design.


Subject(s)
Culicidae , Animals , Mosquito Control , Africa/epidemiology
2.
Malar J ; 22(1): 16, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36635658

ABSTRACT

BACKGROUND: To achieve malaria elimination it is essential to understand the impact of insecticide-treated net (ITNs) programmes. Here, the impact of ITN access and use on malaria prevalence in children in Malawi was investigated using Malaria Indicator Survey (MIS) data. METHODS: MIS data from 2012, 2014 and 2017 were used to investigate the relationship between malaria prevalence in children (6-59 months) and ITN use. Generalized linear modelling (GLM), geostatistical mixed regression modelling and non-stationary GLM were undertaken to evaluate trends, spatial patterns and local dynamics, respectively. RESULTS: Malaria prevalence in Malawi was 27.1% (95% CI 23.1-31.2%) in 2012 and similar in both 2014 (32.1%, 95% CI 25.5-38.7) and 2017 (23.9%, 95% CI 20.3-27.4%). ITN coverage and use increased during the same time period, with household ITN access growing from 19.0% (95% CI 15.6-22.3%) of households with at least 1 ITN for every 2 people sleeping in the house the night before to 41.7% (95% CI 39.1-44.4%) and ITN use from 41.1% (95% CI 37.3-44.9%) of the population sleeping under an ITN the previous night to 57.4% (95% CI 55.0-59.9%). Both the geostatistical and non-stationary GLM regression models showed child malaria prevalence had a negative association with ITN population access and a positive association with ITN use although affected by large uncertainties. The non-stationary GLM highlighted the spatital heterogeneity in the relationship between childhood malaria and ITN dynamics across the country. CONCLUSION: Malaria prevalence in children under five had a negative association with ITN population access and a positive association with ITN use, with spatial heterogeneity in these relationships across Malawi. This study presents an important modelling approach that allows malaria control programmes to spatially disentangle the impact of interventions on malaria cases.


Subject(s)
Insecticide-Treated Bednets , Malaria , Humans , Child , Malawi/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Family Characteristics , Surveys and Questionnaires , Mosquito Control
3.
PLoS Pathog ; 18(7): e1010622, 2022 07.
Article in English | MEDLINE | ID: mdl-35793345

ABSTRACT

Malaria hotspots have been the focus of public health managers for several years due to the potential elimination gains that can be obtained from targeting them. The identification of hotspots must be accompanied by the description of the overall network of stable and unstable hotspots of malaria, especially in medium and low transmission settings where malaria elimination is targeted. Targeting hotspots with malaria control interventions has, so far, not produced expected benefits. In this work we have employed a mechanistic-stochastic algorithm to identify clusters of super-spreader houses and their related stable hotspots by accounting for mosquito flight capabilities and the spatial configuration of malaria infections at the house level. Our results show that the number of super-spreading houses and hotspots is dependent on the spatial configuration of the villages. In addition, super-spreaders are also associated to house characteristics such as livestock and family composition. We found that most of the transmission is associated with winds between 6pm and 10pm although later hours are also important. Mixed mosquito flight (downwind and upwind both with random components) were the most likely movements causing the spread of malaria in two out of the three study areas. Finally, our algorithm (named MALSWOTS) provided an estimate of the speed of malaria infection progression from house to house which was around 200-400 meters per day, a figure coherent with mark-release-recapture studies of Anopheles dispersion. Cross validation using an out-of-sample procedure showed accurate identification of hotspots. Our findings provide a significant contribution towards the identification and development of optimal tools for efficient and effective spatio-temporal targeted malaria interventions over potential hotspot areas.


Subject(s)
Anopheles , Malaria , Parasites , Animals , Humans , Livestock , Malaria/parasitology , Mosquito Control
5.
Malar J ; 19(1): 150, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32276585

ABSTRACT

BACKGROUND: Indoor residual spraying (IRS) is a key tool for controlling and eliminating malaria by targeting vectors. To support the development of effective intervention strategies it is important to understand the impact of vector control tools on malaria incidence and on the spread of insecticide resistance. In 2006, the World Health Organization (WHO) stated that countries should report on coverage and impact of IRS, yet IRS coverage data are still sparse and unspecific. Here, the subnational coverage of IRS across sub-Saharan Africa for the four main insecticide classes from 1997 to 2017 were estimated. METHODS: Data on IRS deployment were collated from a variety of sources, including the President's Malaria Initiative spray reports and National Malaria Control Programme reports, for all 46 malaria-endemic countries in sub-Saharan Africa from 1997 to 2017. The data were mapped to the applicable administrative divisions and the proportion of households sprayed for each of the four main insecticide classes; carbamates, organochlorines, organophosphates and pyrethroids was calculated. RESULTS: The number of countries implementing IRS increased considerably over time, although the focal nature of deployment means the number of people protected remains low. From 1997 to 2010, DDT and pyrethroids were commonly used, then partly replaced by carbamates from 2011 and by organophosphates from 2013. IRS deployment since the publication of resistance management guidelines has typically avoided overlap between pyrethroid IRS and ITN use. However, annual rotations of insecticide classes with differing modes of action are not routinely used. CONCLUSION: This study highlights the gaps between policy and practice, emphasizing the continuing potential of IRS to drive resistance. The data presented here can improve studies on the impact of IRS on malaria incidence and help to guide future malaria control efforts.


Subject(s)
Communicable Disease Control/statistics & numerical data , Insecticides/therapeutic use , Malaria/prevention & control , Mosquito Control , Africa South of the Sahara , Insecticide Resistance , Insecticides/classification , Mosquito Control/organization & administration , Retrospective Studies
6.
Malar J ; 18(1): 383, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31791332

ABSTRACT

BACKGROUND: Long-lasting insecticidal nets (LLINs) treated with pyrethroids are the foundation of malaria control in sub-Saharan Africa. Rising pyrethroid resistance in vectors, however, has driven the development of alternative net formulations. Here the durability of polyethylene nets with a novel combination of a pyrethroid, permethrin, and the insect juvenile hormone mimic, pyriproxyfen (PPF), compared to a standard permethrin LLIN, was assessed in rural Burkina Faso. METHODS: A compound-randomized controlled trial was completed in two villages. In one village 326 of the PPF-permethrin nets (Olyset Duo) and 327 standard LLINs (Olyset) were distributed to assess bioefficacy. In a second village, 170 PPF-permethrin nets and 376 LLINs were distributed to assess survivorship. Nets were followed at 6-monthly intervals for 3 years. Bioefficacy was assessed by exposing permethrin-susceptible and resistant Anopheles gambiae sensu lato mosquito strains to standard World Health Organization (WHO) cone and tunnel tests with impacts on fertility measured in the resistant strain. Insecticide content was measured using high-performance liquid chromatography. LLIN survivorship was recorded with a questionnaire and assessed by comparing the physical integrity using the proportionate hole index (pHI). RESULTS: The PPF-permethrin net met WHO bioefficacy criteria (≥ 80% mortality or ≥ 95% knockdown) for the first 18 months, compared to 6 months for the standard LLIN. Mean mosquito mortality for PPF-permethrin nets, across all time points, was 8.6% (CI 2.6-14.6%) higher than the standard LLIN. Fertility rates were reduced after PPF-permethrin net exposure at 1-month post distribution, but not later. Permethrin content of both types of nets remained within the target range of 20 g/kg ± 25% for 242/248 nets tested. The pyriproxyfen content of PPF-permethrin nets declined by 54%, from 10.4 g/kg (CI 10.2-10.6) to 4.7 g/kg (CI 3.5-6.0, p < 0.001) over 36 months. Net survivorship was poor, with only 13% of PPF-permethrin nets and 12% of LLINs still present in the original household after 36 months. There was no difference in the fabric integrity or survivorship between the two net types. CONCLUSION: The PPF-permethrin net, Olyset Duo, met or exceeded the performance of the WHO-recommended standard LLIN (Olyset) in the current study but both net types failed the 3-year WHO bioefficacy criteria.


Subject(s)
Anopheles , Insecticide-Treated Bednets/statistics & numerical data , Insecticides , Mosquito Control , Mosquito Vectors , Permethrin , Pyridines , Animals , Burkina Faso , Malaria/prevention & control
7.
Methods Mol Biol ; 2013: 233-285, 2019.
Article in English | MEDLINE | ID: mdl-31267506

ABSTRACT

For the control and elimination of malaria, information on the local vector dynamics is essential. This information provides guidance on appropriate and timely deployment of vector control tools and their subsequent success. The data on the dynamics of local mosquito populations can be collected using many different Anopheles sampling methods. Dependent on the objectives, resources, time, and local environment, different traps and methods can be chosen. This chapter describes the sampling of adult populations, focusing on the important preparatory stages and some of the widely used sampling methods. The trapping methods discussed in this chapter are the human landing catch, human-baited net trap, animal landing catch, animal-baited net trap, CDC miniature light trap, Biogents Suna trap, peripheral net collection, pyrethrum collection, exit/entry trap, and resting shelter. For optimal deployment in the field, a step-by-step description of the sampling methods is given.


Subject(s)
Anopheles/parasitology , Malaria/prevention & control , Adult , Animals , Disease Vectors , Humans , Malaria/transmission , Mosquito Control/methods , Mosquito Vectors/parasitology
8.
Parasit Vectors ; 11(1): 661, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30558671

ABSTRACT

BACKGROUND: Protecting people outdoors against mosquito-borne diseases is a major challenge. Here we compared commercially available personal protection methods to identify the most effective method for outdoor use in northern Lao PDR. METHODS: From June to August 2016 the protective efficacy of treatments were compared in a secondary forest during the afternoon and a village during the evening. Comparisons were made using a replicated Latin square design between: (i) short permethrin-treated overalls; (ii) long permethrin-treated overalls; (iii) short untreated overalls with para-menthane-3,8-diol (PMD) applied topically; (iv) short permethrin-treated overalls plus PMD applied topically; (v) short untreated overalls with metofluthrin coils in a metal casing worn on a belt; and (vi) long untreated overalls. Short untreated overalls served as the control. Cone tests were conducted on the treated and untreated fabric before and after field experiments. A questionnaire survey was used to measure social acceptability. RESULTS: Mosquito coils in a metal casing worn on a belt resulted in 92.3% (95% confidence interval, CI: 88.9-94.6%). landing protection from female mosquitoes in the afternoon and 68.8% (95% CI: 41.7-83.3%) protection in the evening compared to short untreated clothing. PMD was protective both when combined with short permethrin-treated overalls (afternoon, 68.2%, 95% CI: 52.6-78.7%; evening, 52.3%, 95% CI: 33.8-65.7%) and when used in combination with short untreated overalls (afternoon, 55.0%, 95% CI: 41.7-65.2%; evening, 25.2%, 95% CI: 9.4-38.2%). Whilst long permethrin-treated overalls were protective (afternoon, 61.1%, 95% CI: 51.4-68.8%; evening, 43.0%, 95% CI: 25.5-56.4%), short permethrin-treated overalls and long untreated overalls were not. Exposure to new permethrin-treated fabric in cone tests resulted in 25.0% (95% CI, 17.8-32.2%) and 26.2% (95% CI 16.7-35.8%) mortality for susceptible Ae. albopictus and susceptible Ae. aegypti, respectively. There was a loss of efficacy of permethrin-treated clothing after use in the field, with 3 min knockdown rates of Ae. albopictus and 1 h knockdown of Ae. aegypti decreasing over time. Participants considered all treatments acceptable. CONCLUSIONS: The portable mosquito coils were highly protective against outdoor biting mosquitoes, although there are safety concerns related to its use. The combination of permethrin-treated clothing and PMD repellent represent an alternative treatment for protection against outdoor-biting mosquitoes.


Subject(s)
Insect Bites and Stings/prevention & control , Mosquito Control/methods , Animals , Culicidae/drug effects , Culicidae/physiology , Female , Humans , Insect Bites and Stings/parasitology , Insect Repellents/pharmacology , Insecticides/pharmacology , Laos , Male , Mosquito Control/instrumentation , Permethrin/pharmacology
9.
PLoS One ; 13(10): e0206387, 2018.
Article in English | MEDLINE | ID: mdl-30359425

ABSTRACT

In the last four decades there has been a staggering increase in the geographical range of the arboviral vector Aedes albopictus (Skuse, 1894). This species is now found in every continent except Antarctica, increasing the distribution of arboviral diseases such as dengue and chikungunya. In Lao PDR dengue epidemics occur regularly, with cases of chikungunya also reported. As treatment methods for arboviral diseases is limited, the control of the vector mosquitoes are essential. There is a paucity of information on the bionomics and resistance status of this mosquito for successful vector control efforts. Here we describe the bionomics and insecticide resistance status of Ae. albopictus in Laos to identify opportunities for control. Adult Ae. albopictus were collected using human-baited double bed net (HDN) traps in forests, villages and rubber plantations and tested for alpha- and flaviviruses with RT-PCR. Surveys were also conducted to identify larval habitats. Seven adult and larval populations originating from Vientiane Capital and Luang Prabang province were tested against DDT, malathion, permethrin, deltamethrin and, temephos following WHO protocols. Aedes albopictus were found throughout the year, but were six-fold greater in the rainy season than the dry season. Adult females were active for 24 hours, with peak of behaviour at 18.00 h. The secondary forest and rubber plantation samples showed evidence of Pan-flaviviruses, while samples from the villages did not. More than half of the emerged Ae. albopictus were collected from mature rubber plantations (53.9%; 1,533/2,845). Most Ae. albopictus mosquitoes emerged from latex collection cups (19.7%; 562/2,845), small water containers (19.7%; 562/2,845) and tyres (17.4%; 495/2,845). Adult mosquitoes were susceptible to pyrethroids, apart from one population in Vientiane city. All populations were resistant to DDT (between 27-90% mortality) and all except one were resistant to malathion (20-86%). Three of the seven larval populations were resistant to temephos (42-87%), with suspected resistance found in three other populations (92-98%).This study demonstrates that rural areas in northern Laos are potential hot spots for arboviral disease transmission. Multiple-insecticide resistance was found. Aedes albopictus control efforts in villages need to expand to include secondary forests and rubber plantations, with larval source management and limited use of insecticides.


Subject(s)
Aedes/drug effects , Insecticide Resistance , Mosquito Vectors/drug effects , Aedes/virology , Animals , Arboviruses , Ecology , Ecosystem , Female , Laos , Male , Mosquito Vectors/virology , Seasons
10.
PLoS Negl Trop Dis ; 11(7): e0005802, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28742854

ABSTRACT

BACKGROUND: One major consequence of economic development in South-East Asia has been a rapid expansion of rubber plantations, in which outbreaks of dengue and malaria have occurred. Here we explored the difference in risk of exposure to potential dengue, Japanese encephalitis (JE), and malaria vectors between rubber workers and those engaged in traditional forest activities in northern Laos PDR. METHODOLOGY/PRINCIPAL FINDINGS: Adult mosquitoes were collected for nine months in secondary forests, mature and immature rubber plantations, and villages. Human behavior data were collected using rapid participatory rural appraisals and surveys. Exposure risk was assessed by combining vector and human behavior and calculating the basic reproduction number (R0) in different typologies. Compared to those that stayed in the village, the risk of dengue vector exposure was higher for those that visited the secondary forests during the day (odds ratio (OR) 36.0), for those living and working in rubber plantations (OR 16.2) and for those that tapped rubber (OR 3.2). Exposure to JE vectors was also higher in the forest (OR 1.4) and, similar when working (OR 1.0) and living in the plantations (OR 0.8). Exposure to malaria vectors was greater in the forest (OR 1.3), similar when working in the plantations (OR 0.9) and lower when living in the plantations (OR 0.6). R0 for dengue was >2.8 for all habitats surveyed, except villages where R0≤0.06. The main malaria vector in all habitats was Anopheles maculatus s.l. in the rainy season and An. minimus s.l. in the dry season. CONCLUSIONS/SIGNIFICANCE: The highest risk of exposure to vector mosquitoes occurred when people visit natural forests. However, since rubber workers spend long periods in the rubber plantations, their risk of exposure is increased greatly compared to those who temporarily enter natural forests or remain in the village. This study highlights the necessity of broadening mosquito control to include rubber plantations.


Subject(s)
Environmental Exposure , Mosquito Vectors/growth & development , Occupational Exposure , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Basic Reproduction Number , Child , Child, Preschool , Dengue/epidemiology , Dengue/transmission , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/transmission , Female , Humans , Infant , Laos , Malaria/epidemiology , Malaria/transmission , Male , Middle Aged , Risk Assessment , Rural Population , Young Adult
11.
J Med Entomol ; 54(6): 1589-1604, 2017 11 07.
Article in English | MEDLINE | ID: mdl-28505314

ABSTRACT

The impact of the rapid expansion of rubber plantations in South-East Asia on mosquito populations is uncertain. We compared the abundance and diversity of adult mosquitoes using human-baited traps in four typical rural habitats in northern Lao PDR: secondary forests, immature rubber plantations, mature rubber plantations, and villages. Generalized estimating equations were used to explore differences in mosquito abundance between habitats, and Simpson's diversity index was used to measure species diversity. Over nine months, 24,927 female mosquitoes were collected, including 51 species newly recorded in Lao PDR. A list of the 114 mosquito species identified is included. More mosquitoes, including vector species, were collected in the secondary forest than immature rubber plantations (rainy season, odds ratio [OR] 0.33, 95% confidence interval [CI] 0.31-0.36; dry season, 0.46, 95% CI 0.41-0.51), mature rubber plantations (rainy season, OR 0.25, 95% CI 0.23-0.27; dry season, OR 0.25, 95% CI 0.22-0.28), and villages (rainy season, OR 0.13, 95% CI 0.12-0.14; dry season, 0.20, 95% CI 0.18-0.23). All habitats showed high species diversity (Simpson's indexes between 0.82-0.86) with vectors of dengue, Japanese encephalitis (JE), lymphatic filariasis, and malaria. In the secondary forests and rubber plantations, Aedes albopictus (Skuse), a dengue vector, was the dominant mosquito species, while in the villages, Culex vishnui (Theobald), a JE vector, was most common. This study has increased the overall knowledge of mosquito fauna in Lao PDR. The high abundance of Ae. albopictus in natural and man-made forests warrants concern, with vector control measures currently only implemented in cities and villages.


Subject(s)
Biodiversity , Culicidae , Mosquito Vectors , Adult , Animals , Female , Humans , Laos , Male , Middle Aged , Population Density , Population Dynamics , Rural Population , Young Adult
12.
Trends Parasitol ; 32(5): 402-415, 2016 05.
Article in English | MEDLINE | ID: mdl-26907494

ABSTRACT

Unprecedented economic growth in Southeast Asia (SEA) has encouraged the expansion of rubber plantations. This land-use transformation is changing the risk of mosquito-borne diseases. Mature plantations provide ideal habitats for the mosquito vectors of malaria, dengue, and chikungunya. Migrant workers may introduce pathogens into plantation areas, most worryingly artemisinin-resistant malaria parasites. The close proximity of rubber plantations to natural forest also increases the threat from zoonoses, where new vector-borne pathogens spill over from wild animals into humans. There is therefore an urgent need to scale up vector control and access to health care for rubber workers. This requires an intersectoral approach with strong collaboration between the health sector, rubber industry, and local communities.


Subject(s)
Chikungunya Fever/prevention & control , Dengue/prevention & control , Farms , Malaria/prevention & control , Animals , Asia, Southeastern , Chikungunya Fever/epidemiology , Culicidae/parasitology , Culicidae/virology , Dengue/epidemiology , Humans , Malaria/epidemiology , Rubber , Zoonoses/prevention & control
13.
PLoS One ; 10(9): e0138735, 2015.
Article in English | MEDLINE | ID: mdl-26381896

ABSTRACT

Estimating the exposure of individuals to mosquito-borne diseases is a key measure used to evaluate the success of vector control operations. The gold standard is to use human landing catches where mosquitoes are collected off the exposed limbs of human collectors. This is however an unsatisfactory method since it potentially exposes individuals to a range of mosquito-borne diseases. In this study several sampling methods were compared to find a method that is representative of the human-biting rate outdoors, but which does not expose collectors to mosquito-borne infections. The sampling efficiency of four odour-baited traps were compared outdoors in rural Lao PDR; the human-baited double net (HDN) trap, CDC light trap, BG sentinel trap and Suna trap. Subsequently the HDN, the best performing trap, was compared directly with human landing catches (HLC), the 'gold standard', for estimating human-biting rates. HDNs collected 11-44 times more mosquitoes than the other traps, with the exception of the HLC. The HDN collected similar numbers of Anopheles (Rate Ratio, RR = 1.16, 95% Confidence Intervals, 95% CI = 0.61-2.20) and Culex mosquitoes (RR = 1.26, 95% CI = 0.74-2.17) as HLC, but under-estimated the numbers of Aedes albopictus (RR = 0.45, 95% CI = 0.27-0.77). Simpson's index of diversity was 0.845 (95% CI 0.836-0.854) for the HDN trap and 0.778 (95% CI 0.769-0.787) for HLC, indicating that the HDN collected a greater diversity of mosquito species than HLC. Both HLC and HDN can distinguish between low and high biting rates and are crude ways to measure human-biting rate. The HDN is a simple and cheap method to estimate the human-biting rate outdoors without exposing collectors to mosquito bites.


Subject(s)
Data Collection/methods , Insect Bites and Stings/epidemiology , Mosquito Control/methods , Odorants , Aedes , Animals , Anopheles , Culex , Entomology/methods , Humans , Incidence , Laos , Rural Population
14.
PLoS One ; 8(9): e74351, 2013.
Article in English | MEDLINE | ID: mdl-24058551

ABSTRACT

BACKGROUND: Malaria vector control is threatened by resistance to pyrethroids, the only class of insecticides used for treating bed nets. The second major vector control method is indoor residual spraying with pyrethroids or the organochloride DDT. However, resistance to pyrethroids frequently confers resistance to DDT. Therefore, alternative insecticides are urgently needed. METHODOLOGY/PRINCIPAL FINDINGS: Insecticide resistance and the efficacy of indoor residual spraying with different insecticides was determined in a Gambian village. Resistance of local vectors to pyrethroids and DDT was high (31% and 46% mortality, respectively) while resistance to bendiocarb and pirimiphos methyl was low (88% and 100% mortality, respectively). The vectors were predominantly Anopheles gambiae s.s. with 94% of them having the putative resistant genotype kdr 1014F. Four groups of eight residential compounds were each sprayed with either (1) bendiocarb, a carbamate, (2) DDT, an organochlorine, (3) microencapsulated pirimiphos methyl, an organophosphate, or (4) left unsprayed. All insecticides tested showed high residual activity up to five months after application. Mosquito house entry, estimated by light traps, was similar in all houses with metal roofs, but was significantly less in IRS houses with thatched roofs (p=0.02). Residents participating in focus group discussions indicated that IRS was considered a necessary nuisance and also may decrease the use of long-lasting insecticidal nets. CONCLUSION/SIGNIFICANCE: Bendiocarb and microencapsulated pirimiphos methyl are viable alternatives for indoor residual spraying where resistance to pyrethroids and DDT is high and may assist in the management of pyrethroid resistance.


Subject(s)
DDT/toxicity , Insect Vectors/drug effects , Insecticide Resistance/drug effects , Malaria/prevention & control , Mosquito Control , Pyrethrins/toxicity , Rural Population , Animals , Anopheles/drug effects , Anopheles/genetics , Female , Focus Groups , Gambia , Genotype , Insect Vectors/genetics , Malaria/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...