Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834560

ABSTRACT

iron-based coatings have exhibited good mechanical properties, such as high hardness and good wear resistance, which are desirable properties in applications such as automobile brake rotors. iron-based coatings are also good replacements for Co- and Ni-based coatings, which are costly and could have health and environmental concerns due to their toxicity. In this research, three different iron-based coatings were deposited using the Detonation Gun Spraying (DGS) technology onto aluminum substrates, including the steel powders alone (unreinforced), and steel powders mixed with Fe3C and SiC particles, respectively. The microstructural characteristics of these coatings and mechanical properties, such as hardness and wear resistance, were examined. The morphology and structure of the feedstock powders were affected by the exposure to high temperature during the spraying process and rapid solidification of steel powders that resulted in the formation of an amorphous structure. While it was expected that steel particles reinforced with hard ceramic particles would result in increased hardness, instead, the unreinforced steel coating had the highest hardness, possibly due to a higher degree of amorphization in the coating than the other two. The microstructural observation confirmed the formation of dense coatings with good adhesion between layers. All samples were subjected to ball-on-disk wear tests at room temperature (23 °C) and at 200 °C. Similar wear resistances of the three samples were obtained at room temperature. At 200 °C, however, both ceramic reinforced composite samples exhibited higher wear rates in line with the reduction in their hardness values. This work explains, from the microstructural point of view, why adding hard particles to steel powers may not always lead to coatings with higher hardness and better wear resistance.

2.
Philos Trans A Math Phys Eng Sci ; 366(1866): 811-27, 2008 Mar 13.
Article in English | MEDLINE | ID: mdl-17947203

ABSTRACT

A ring damper can be affixed to a rotating base structure such as a gear, an automotive brake rotor or a gas turbine's labyrinth air seal. Depending on the frequency range, wavenumber and level of preload, vibration of the base structure can be effectively and passively attenuated by friction that develops along the interface between it and the damper. The assembly is modelled as two rods that couple in longitudinal vibration through spatially distributed hysteretic friction, with each rod having periodic boundary conditions in a manner analogous to an unwrapped ring and disc. As is representative of rotating machinery applications, the system is driven by a travelling wave disturbance, and for that form of excitation, the base structure's and the damper's responses are determined without the need for computationally intensive simulation. The damper's performance can be optimized with respect to normal preload, and its effectiveness is insensitive to variations in preload or the excitation's magnitude when its natural frequency is substantially lower than the base structure's in the absence of contact.

SELECTION OF CITATIONS
SEARCH DETAIL
...