Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 94(6): 578-83, 2004 Jun.
Article in English | MEDLINE | ID: mdl-18943482

ABSTRACT

ABSTRACT Two types of genetic resistance to Leptosphaeria maculans usually are distinguished in Brassica napus: qualitative, total resistance expressed at the seedling stage and quantitative, partial resistance expressed at the adult plant stage. The latter is under the control of many genetic factors that have been mapped through quantitative trait loci (QTL) studies using 'Darmor' resistance. The former usually is ascribed to race-specific resistance controlled by single resistance to L. maculans (Rlm) genes. Three B. napus-originating specific Rlm genes (Rlm1, Rlm2, and Rlm4) previously were characterized. Here, we report on the genetic identification of two novel resistance genes, Rlm3 and Rlm7, corresponding to the avirulence genes AvrLm3 and AvrLm7. The identification of a novel L. maculans- B. napus specific interaction allowed the detection of another putative new specific resistance gene, Rlm9. The resistance genes were mapped in two genomic regions on LG10 and LG16 linkage groups. A cluster of five resistance genes (Rlm1, Rlm3, Rlm4, Rlm7, and Rlm9) was strongly suggested on LG10. The relation between all these specific resistance genes and their potential role in adult-plant field resistance is discussed. These two Rlm-carrying regions do not correspond to major QTL for Darmor quantitative resistance.

2.
Theor Appl Genet ; 88(3-4): 362-8, 1994 Jun.
Article in English | MEDLINE | ID: mdl-24186020

ABSTRACT

Spontaneous interspecific hybrids were produced under natural conditions (pollination by wind and bees) between a male-sterile cybrid Brassica napus (AACC, 2n = 38) and two weeds Brassica adpressa (AdAd, 2n = 14) and Raphanus raphanistrum (RrRr, 2n = 18). After characterization by chromosome counts and isozyme analyses, we observed 512 and 3 734 inter-specific seeds per m(2) for the B. napus-B. adpressa and B. napus-R. raphanistrum trials respectively. Most of the hybrids studied had the expected triploid structure (ACX). In order to quantify the frequency of allosyndesis between the genomes involved in the hybrids, their meiotic behavior was compared to a haploid of B. napus (AC). For the B. napus-B. adpressa hybrids, we concluded that probably no allosyndesis occurred between the two parental genomes, and that genetic factors regulating homoeologous chromosome pairing were carried by the B. adpressa genome. For the B. napus-R. raphanistrum hybrids, high chromosome pairing and the presence of multivalents (in 9.16% of the pollen mother cells) indicate that recombination is possible between chromosomes of different genomes. Pollen fertility of the hybrids ranged from 0 to 30%. Blackleg inoculation tests were performed on the three parental species and on the interspecific hybrids. BC1 production with the weeds and with rapeseed was attempted. Results are discussed in regard to the risk assessment of transgenic rapeseed cultivation, F1 hybrid rapeseed variety production, and rapeseed improvement.

SELECTION OF CITATIONS
SEARCH DETAIL
...