Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 48(7): 2896-902, 2000 Jul.
Article in English | MEDLINE | ID: mdl-11032483

ABSTRACT

Solutions of commercial soybean lipoxygenase (100 microgram/ML in 0.2 M citrate-phosphate and 0.2 M Tris buffer were subjected to pressures of 0.1, 200, 400, and 600 MPa for 20 mm. The enzyme was stable at atmospheric pressure (0.1 MPa) over a wide pH range (5-9). In citrate phosphate buffer, the enzyme had maximum stability over the pH range 58 in untreated samples and after treatment at 200 MPa, but with increasing pressure, the pH stability range become narrower and centered around pH 78. The enzyme was more sensitive to acid than alkali, and at pH 9, it lost virtually all activity after pressurization at 600 MPa for 20 mm in both buffers. The activity of the crude enzyme extracted from tomatoes treated at 200 and 300 MPa for 10 mm was not significantly different from that of the untreated tomatoes, while a pressure of 400 MPa for 10 mm caused a significant decrease in activity and treatment at 600 MPa led to complete and irreversible activity loss. Compared to unpressurized tomatoes, treatment at 600 MPa gave significantly reduced levels of hexanal, cis-3-hexenal, and trans-2-hexenal, which are important contributors to "fresh" tomato flavor, and this was attributed to the inactivation of lipoxygenase.


Subject(s)
Lipoxygenase/metabolism , Solanum lycopersicum/enzymology , Electrophoresis, Polyacrylamide Gel , Hydrogen-Ion Concentration , Solanum lycopersicum/chemistry , Pressure , Glycine max/enzymology , Taste
2.
J Agric Food Chem ; 48(5): 1434-41, 2000 May.
Article in English | MEDLINE | ID: mdl-10820039

ABSTRACT

The effect of high-pressure treatment (200-600 MPa for 20 min) on the texture of cherry tomatoes and on the key softening enzymes (pectinmethylesterase and polygalacturonase) was investigated. When subjected to high-pressure treatment whole cherry tomatoes showed increasing textural damage with increasing pressures up to 400 MPa. However, treatment at pressures above 400 MPa (500-600 MPa) led to less apparent damage than treatment at 300 and 400 MPa; the tomatoes appearing more like the untreated samples. These visual changes were reflected in the texture (firmness) and amount of cell rupture in the tomatoes, with the least firmness and the most cell rupture being seen after treatment at 400 MPa. Light and scanning electron microscopy supported these observations. Although a sample of purified commercial pectinmethylesterase was partially inactivated at pressures above 200 MPa, irrespective of pH (4-9), in the whole cherry tomatoes no significant inactivation was seen even after treatment at 600 MPa, presumably because other components in the tomato offered protection or the isoenzymes were different. Polygalacturonase was more susceptible to pressure, being almost totally inactivated after treatment at 500 MPa. It is concluded that the textural changes in tomato induced by pressure involve at least two related phenomena. Initially, damage is caused by the greater compressibilty of the gaseous phase (air) compared to liquid-solid components, giving rise to a compact structure which, on pressure release, is damaged as the air rapidly expands, leading to increases in membrane permeability. This permits egress of water, and the damage also enables enzymatic action to increase, causing further cell damage and softening. The major enzyme involved in the further softening is polygalacturonase, which is inactivated at 500 MPa and above, and not pectinmethylesterase, which in the whole fruit, is barotolerant.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/cytology , Solanum lycopersicum/enzymology , Plant Viral Movement Proteins , Polygalacturonase/metabolism , Pressure , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...