Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687990

ABSTRACT

A camera captures multidimensional information of the real world by convolving it into two dimensions using a sensing matrix. The original multidimensional information is then reconstructed from captured images. Traditionally, multidimensional information has been captured by uniform sampling, but by optimizing the sensing matrix, we can capture images more efficiently and reconstruct multidimensional information with high quality. Although compressive video sensing requires random sampling as a theoretical optimum, when designing the sensing matrix in practice, there are many hardware limitations (such as exposure and color filter patterns). Existing studies have found random sampling is not always the best solution for compressive sensing because the optimal sampling pattern is related to the scene context, and it is hard to manually design a sampling pattern and reconstruction algorithm. In this paper, we propose an end-to-end learning approach that jointly optimizes the sampling pattern as well as the reconstruction decoder. We applied this deep sensing approach to the video compressive sensing problem. We modeled the spatio-temporal sampling and color filter pattern using a convolutional neural network constrained by hardware limitations during network training. We demonstrated that the proposed method performs better than the manually designed method in gray-scale video and color video acquisitions.

2.
IEEE Trans Pattern Anal Mach Intell ; 44(9): 5618-5630, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33848240

ABSTRACT

We introduce a method of recovering the shape of a smooth dielectric object using diffuse polarization images taken with different directional light sources. We present two constraints on shading and polarization and use both in a single optimization scheme. This integration is motivated by photometric stereo and polarization-based methods having complementary abilities. Polarization gives strong cues for the surface orientation and refractive index, which are independent of the light direction. However, employing polarization leads to ambiguities in selecting between two ambiguous choices of the surface orientation, in the relationship between the refractive index and zenith angle (observing angle). Moreover, polarization-based methods for surface points with small zenith angles perform poorly owing to the weak polarization. In contrast, the photometric stereo method with multiple light sources disambiguates the surface normals and gives a strong relationship between surface normals and light directions. However, the method has limited performance for large zenith angles and refractive index estimation and faces strong ambiguity when light directions are unknown. Taking the advantages of these methods, our proposed method recovers surface normals for small and large zenith angles, light directions, and refractive indexes of the object. The proposed method is positively evaluated in simulations and real-world experiments.

3.
Sensors (Basel) ; 19(20)2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31652552

ABSTRACT

Automatic vehicle detection and counting are considered vital in improving traffic control and management. This work presents an effective algorithm for vehicle detection and counting in complex traffic scenes by combining both convolution neural network (CNN) and the optical flow feature tracking-based methods. In this algorithm, both the detection and tracking procedures have been linked together to get robust feature points that are updated regularly every fixed number of frames. The proposed algorithm detects moving vehicles based on a background subtraction method using CNN. Then, the vehicle's robust features are refined and clustered by motion feature points analysis using a combined technique between KLT tracker and K-means clustering. Finally, an efficient strategy is presented using the detected and tracked points information to assign each vehicle label with its corresponding one in the vehicle's trajectories and truly counted it. The proposed method is evaluated on videos representing challenging environments, and the experimental results showed an average detection and counting precision of 96.3% and 96.8%, respectively, which outperforms other existing approaches.

4.
Sensors (Basel) ; 19(17)2019 Aug 31.
Article in English | MEDLINE | ID: mdl-31480413

ABSTRACT

This paper presents an end-to-end learning framework for performing 6-DOF odometry by using only inertial data obtained from a low-cost IMU. The proposed inertial odometry method allows leveraging inertial sensors that are widely available on mobile platforms for estimating their 3D trajectories. For this purpose, neural networks based on convolutional layers combined with a two-layer stacked bidirectional LSTM are explored from the following three aspects. First, two 6-DOF relative pose representations are investigated: one based on a vector in the spherical coordinate system, and the other based on both a translation vector and an unit quaternion. Second, the loss function in the network is designed with the combination of several 6-DOF pose distance metrics: mean squared error, translation mean absolute error, quaternion multiplicative error and quaternion inner product. Third, a multi-task learning framework is integrated to automatically balance the weights of multiple metrics. In the evaluation, qualitative and quantitative analyses were conducted with publicly-available inertial odometry datasets. The best combination of the relative pose representation and the loss function was the translation and quaternion together with the translation mean absolute error and quaternion multiplicative error, which obtained more accurate results with respect to state-of-the-art inertial odometry techniques.

5.
Sensors (Basel) ; 19(4)2019 Feb 23.
Article in English | MEDLINE | ID: mdl-30813452

ABSTRACT

The urban environments represent challenging areas for handheld device pose estimation (i.e., 3D position and 3D orientation) in large displacements. It is even more challenging with low-cost sensors and computational resources that are available in pedestrian mobile devices (i.e., monocular camera and Inertial Measurement Unit). To address these challenges, we propose a continuous pose estimation based on monocular Visual Odometry. To solve the scale ambiguity and suppress the scale drift, an adaptive pedestrian step lengths estimation is used for the displacements on the horizontal plane. To complete the estimation, a handheld equipment height model, with respect to the Digital Terrain Model contained in Geographical Information Systems, is used for the displacement on the vertical axis. In addition, an accurate pose estimation based on the recognition of known objects is punctually used to correct the pose estimate and reset the monocular Visual Odometry. To validate the benefit of our framework, experimental data have been collected on a 0.7 km pedestrian path in an urban environment for various people. Thus, the proposed solution allows to achieve a positioning error of 1.6⁻7.5% of the walked distance, and confirms the benefit of the use of an adaptive step length compared to the use of a fixed-step length.


Subject(s)
Algorithms , Biosensing Techniques/methods , Pedestrians , Geographic Information Systems , Humans , Walking/physiology
6.
Sensors (Basel) ; 19(1)2019 Jan 06.
Article in English | MEDLINE | ID: mdl-30621340

ABSTRACT

This paper presents a framework of incremental 3D cuboid modeling by using the mapping results of an RGB-D camera based simultaneous localization and mapping (SLAM) system. This framework is useful in accurately creating cuboid CAD models from a point cloud in an online manner. While performing the RGB-D SLAM, planes are incrementally reconstructed from a point cloud in each frame to create a plane map. Then, cuboids are detected in the plane map by analyzing the positional relationships between the planes, such as orthogonality, convexity, and proximity. Finally, the position, pose, and size of a cuboid are determined by computing the intersection of three perpendicular planes. To suppress the false detection of the cuboids, the cuboid shapes are incrementally updated with sequential measurements to check the uncertainty of the cuboids. In addition, the drift error of the SLAM is compensated by the registration of the cuboids. As an application of our framework, an augmented reality-based interactive cuboid modeling system was developed. In the evaluation at cluttered environments, the precision and recall of the cuboid detection were investigated, compared with a batch-based cuboid detection method, so that the advantages of our proposed method were clarified.

7.
Sensors (Basel) ; 19(2)2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30669617

ABSTRACT

Demand for indoor navigation systems has been rapidly increasing with regard to location-based services. As a cost-effective choice, inertial measurement unit (IMU)-based pedestrian dead reckoning (PDR) systems have been developed for years because they do not require external devices to be installed in the environment. In this paper, we propose a PDR system based on a chest-mounted IMU as a novel installation position for body-suit-type systems. Since the IMU is mounted on a part of the upper body, the framework of the zero-velocity update cannot be applied because there are no periodical moments of zero velocity. Therefore, we propose a novel regression model for estimating step lengths only with accelerations to correctly compute step displacement by using the IMU data acquired at the chest. In addition, we integrated the idea of an efficient map-matching algorithm based on particle filtering into our system to improve positioning and heading accuracy. Since our system was designed for 3D navigation, which can estimate position in a multifloor building, we used a barometer to update pedestrian altitude, and the components of our map are designed to explicitly represent building-floor information. With our complete PDR system, we were awarded second place in 10 teams for the IPIN 2018 Competition Track 2, achieving a mean error of 5.2 m after the 800 m walking event.


Subject(s)
Algorithms , Pedestrians , Thorax , Calibration , Humans , Walking
8.
Sensors (Basel) ; 18(11)2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30428530

ABSTRACT

This paper proposes a new approach to visualizing spatial variation of plant status in a tomato greenhouse based on farm work information operated by laborers. Farm work information consists of a farm laborer's position and action. A farm laborer's position is estimated based on radio wave strength measured by using a smartphone carried by the farm laborer and Bluetooth beacons placed in the greenhouse. A farm laborer's action is recognized based on motion data measured by using smartwatches worn on both wrists of the farm laborer. As experiment, harvesting information operated by one farm laborer in a part of a tomato greenhouse is obtained, and the spatial distribution of yields in the experimental field, called a harvesting map, is visualized. The mean absolute error of the number of harvested tomatoes in each small section of the experimental field is 0.35. An interview with the farm manager shows that the harvesting map is useful for intuitively grasping the states of the greenhouse.

9.
Sensors (Basel) ; 18(4)2018 Apr 17.
Article in English | MEDLINE | ID: mdl-29673193

ABSTRACT

Reconstruction-based change detection methods are robust for camera motion. The methods learn reconstruction of input images based on background images. Foreground regions are detected based on the magnitude of the difference between an input image and a reconstructed input image. For learning, only background images are used. Therefore, foreground regions have larger differences than background regions. Traditional reconstruction-based methods have two problems. One is over-reconstruction of foreground regions. The other is that decision of change detection depends on magnitudes of differences only. It is difficult to distinguish magnitudes of differences in foreground regions when the foreground regions are completely reconstructed in patch images. We propose the framework of a reconstruction-based change detection method for a free-moving camera using patch images. To avoid over-reconstruction of foreground regions, our method reconstructs a masked central region in a patch image from a region surrounding the central region. Differences in foreground regions are enhanced because foreground regions in patch images are removed by the masking procedure. Change detection is learned from a patch image and a reconstructed image automatically. The decision procedure directly uses patch images rather than the differences between patch images. Our method achieves better accuracy compared to traditional reconstruction-based methods without masking patch images.

10.
Sensors (Basel) ; 18(3)2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29510599

ABSTRACT

The photometric stereo method enables estimation of surface normals from images that have been captured using different but known lighting directions. The classical photometric stereo method requires at least three images to determine the normals in a given scene. However, this method cannot be applied to dynamic scenes because it is assumed that the scene remains static while the required images are captured. In this work, we present a dynamic photometric stereo method for estimation of the surface normals in a dynamic scene. We use a multi-tap complementary metal-oxide-semiconductor (CMOS) image sensor to capture the input images required for the proposed photometric stereo method. This image sensor can divide the electrons from the photodiode from a single pixel into the different taps of the exposures and can thus capture multiple images under different lighting conditions with almost identical timing. We implemented a camera lighting system and created a software application to enable estimation of the normal map in real time. We also evaluated the accuracy of the estimated surface normals and demonstrated that our proposed method can estimate the surface normals of dynamic scenes.

11.
Sensors (Basel) ; 17(12)2017 Nov 27.
Article in English | MEDLINE | ID: mdl-29186923

ABSTRACT

A thermal camera captures the temperature distribution of a scene as a thermal image. In thermal images, facial appearances of different people under different lighting conditions are similar. This is because facial temperature distribution is generally constant and not affected by lighting condition. This similarity in face appearances is advantageous for face detection. To detect faces in thermal images, cascade classifiers with Haar-like features are generally used. However, there are few studies exploring the local features for face detection in thermal images. In this paper, we introduce two approaches relying on local features for face detection in thermal images. First, we create new feature types by extending Multi-Block LBP. We consider a margin around the reference and the generally constant distribution of facial temperature. In this way, we make the features more robust to image noise and more effective for face detection in thermal images. Second, we propose an AdaBoost-based training method to get cascade classifiers with multiple types of local features. These feature types have different advantages. In this way we enhance the description power of local features. We did a hold-out validation experiment and a field experiment. In the hold-out validation experiment, we captured a dataset from 20 participants, comprising 14 males and 6 females. For each participant, we captured 420 images with 10 variations in camera distance, 21 poses, and 2 appearances (participant with/without glasses). We compared the performance of cascade classifiers trained by different sets of the features. The experiment results showed that the proposed approaches effectively improve the performance of face detection in thermal images. In the field experiment, we compared the face detection performance in realistic scenes using thermal and RGB images, and gave discussion based on the results.


Subject(s)
Face , Algorithms , Humans , Lighting , Pattern Recognition, Automated
SELECTION OF CITATIONS
SEARCH DETAIL
...