Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Oral Biosci ; 66(2): 420-429, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490561

ABSTRACT

OBJECTIVE: This study aimed to determine the effects of traditional Japanese (Kampo) medicines used to treat oral mucositis on nerve conduction. METHODS: The effects of Kampo medicines, crude drugs, and chemical compounds on compound action potentials (CAPs) were analyzed using extracellular recordings in frog sciatic nerves. RESULTS: Among the Kampo medicines, inchinkoto demonstrated the most significant reduction in CAP amplitude, with a half-maximal inhibitory concentration (IC50) of 5.4 mg/mL. Hangeshashinto, shosaikoto, hochuekkito, and juzentaihoto also showed a significant reduction. Regarding inchinkoto, Artemisiae Capillari Spica (artemisia) was the most effective crude drug, with an IC50 of 4.2 mg/mL for CAP amplitude reduction, whereas Gardeniae Fructus (gardenia) exerted no significant effect. However, the combined use of artemisia and gardenia reduced the CAP amplitude more effectively than artemisia alone, indicating a synergistic interaction. The chemical ingredient eugenol from artemisia administered at 1 and 3 mmol/L reduced CAP amplitude, whereas other chemical ingredients administered at 0.1 and 1 mmol/L had no significant effects. CONCLUSIONS: Inchinkoto exhibited the most effective reduction in CAP amplitude in the sciatic nerve of frogs, primarily through the action of artemisia, with potential synergistic interaction between artemisia and gardenia.


Subject(s)
Action Potentials , Medicine, Kampo , Sciatic Nerve , Animals , Sciatic Nerve/drug effects , Action Potentials/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Stomatitis/drug therapy , Artemisia/chemistry , East Asian People
2.
Biochemistry ; 62(17): 2559-2570, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37540116

ABSTRACT

Synthetic elastin-like peptides (ELPs) that possess characteristic tropoelastin-derived hydrophobic repetitive sequences, such as (VPGVG)n, exhibit thermoresponsive reversible self-assembly. Although their thermoresponsive properties have been well-studied, the sequence-dependent and structural requirements for self-assembly remain ambiguous. In particular, it is still unclear whether the amino acid sequences derived from tropoelastin are necessary for self-assembly. In this study, 11 sequence-shuffled ELP analogues based on (FPGVG)5, which is a previously developed short ELP (sELP), were designed to elucidate the sequence-dependent and structural requirements for their self-assembly. Among them, eight shuffled peptides exhibited self-assembling properties, whereas the other three peptides were difficult to dissolve in water. Structural analyses revealed that the structural characteristics of the three insoluble peptides were different from those of their thermoresponsive analogues. Furthermore, the secondary structures of the peptide analogues possessing the self-assembly abilities were different from each other. These results suggest that the potential for self-assembly and water solubility of sELPs depend on the primary structure in each repeated unit. Moreover, several shuffled analogues exhibited more potent self-assembling properties than the original (FPGVG)5, indicating that shorter ELPs can be obtained using their novel motifs as repetitive units. We also observed that the presence of Pro-Gly sequence in the repeating units was advantageous in terms of peptide solubility. Although further analysis will be necessary to elucidate the molecular mechanism underlying the self-assembly of these sELPs, this study provides insights into the relationship between the amino acid sequence and the self-assembling ability of the peptides for developing new sELPs for various applications.


Subject(s)
Elastin , Tropoelastin , Elastin/chemistry , Tropoelastin/chemistry , Peptides/chemistry , Amino Acid Sequence , Repetitive Sequences, Nucleic Acid
3.
J Pept Sci ; 29(6): e3472, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36541737

ABSTRACT

We aimed to determine the coacervation properties of high-molecular-weight (HMW) tissue-derived elastin (TDE) and to examine the potential use of TDE particles as a cosmetic biomaterial. TDE solutions were filtered and divided into three fractions (1-3) according to the molecular weight of the elastin. The turbidity of fraction 2, which contained a large portion (58%) of HMW elastin polypeptides (>100 kDa), was measured under several pH values (3.0-11.0) and NaCl concentrations (0-1000 mM) to examine its coacervation ability. HMW TDE exhibited coacervation under the physiological conditions (temperature, pH, and NaCl concentration) of the skin surface. We performed inclusion and release experiments using three model chemicals with different molecular weights and measured the size and zeta potential of the fraction 3 particles to investigate the suitability of HMW elastin polypeptides. Fraction 3, which contained a larger portion (64%) of HMW elastin polypeptides, displayed a strong coacervation property at a phase transition temperature of 19.8 ± 0.1°C. The inclusion ratio of the model chemical Biebrich Scarlet (BS) with a molecular weight of <600 was approximately 92.1 ± 0.7%. The release profiles of BS from the particles linearly increased and reached a plateau after 15 days. Moreover, the average size of the particles with BS was 474.2 ± 24.6 nm. The low-molecular-weight (LMW) elastin peptides have moisturizing and whitening functions for the skin. We concluded that TDE, as a mixture of HMW polypeptides and LMW peptides, can potentially serve as a multifunctional and effective cosmetic biomaterial.


Subject(s)
Elastin , Sodium Chloride , Elastin/chemistry , Molecular Weight , Peptides/chemistry , Temperature
4.
Sci Rep ; 12(1): 19414, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371418

ABSTRACT

Functional peptides, which are composed of proteinogenic natural amino acids, are expected to be used as biomaterials with minimal environmental impact. Synthesizing a functional peptide with a shorter amino acid sequence while retaining its function is a easy and economical strategy. Furthermore, shortening functional peptides helps to elucidate the mechanism of their functional core region. Truncated elastin-like peptides (ELPs) are peptides consisting of repetitive sequences, derived from the elastic protein tropoelastin, that show the thermosensitive formation of coacervates. In this study, to obtain shortened ELP analogues, we synthesized several (Phe-Pro-Gly-Val-Gly)n (FPGVG)n analogues with one or two amino acid residues deleted from each repeat sequence, such as the peptide analogues consisting of FPGV and/or FPG sequences. Among the novel truncated ELP analogues, the 16-mer (FPGV)4 exhibited a stronger coacervation ability than the 25-mer (FPGVG)5. These results indicated that the coacervation ability of truncated ELPs was affected by the amino acid sequence and not by the peptide chain length. Based on this finding, we prepared Cd2+-binding sequence-conjugated ELP analogue, AADAAC-(FPGV)4, and found that it could capture Cd2+. These results indicated that the 16-mer (FPGV)4 only composed of proteinogenic amino acids could be a new biomaterial with low environmental impact.


Subject(s)
Cadmium , Elastin , Elastin/genetics , Elastin/chemistry , Temperature , Peptides/genetics , Peptides/chemistry , Amino Acids
5.
Sci Rep ; 12(1): 1861, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115613

ABSTRACT

The development of simple and safe methods for recovering environmental pollutants, such as heavy metals, is needed for sustainable environmental management. Short elastin-like peptide (ELP) analogues conjugated with metal chelating agents are considered to be useful as metal sequestering agents as they are readily produced, environment friendly, and the metal binding domain can be selected based on any target metal of interest. Due to the temperature dependent self-assembly of ELP, the peptide-based sequestering agents can be transformed from the solution state into the particles that chelate metal ions, which can then be collected as precipitates. In this study, we developed a peptide-based sequestering agent, AADAAC-(FPGVG)4, by introducing the metal-binding sequence AADAAC on the N-terminus of a short ELP, (FPGVG)4. In turbidity measurements, AADAAC-(FPGVG)4 revealed strong self-assembling ability in the presence of metal ions such as Cd2+ and Zn2+. The results from colorimetric analysis indicated that AADAAC-(FPGVG)4 could capture Cd2+ and Zn2+. Furthermore, AADAAC-(FPGVG)4 that bound to metal ions could be readily recycled by treatment with acidic solution without compromising its metal binding affinity. The present study indicates that the fusion of the metal-binding sequence and ELP is a useful and powerful strategy to develop cost-effective heavy metal scavenging agents with low environmental impacts.

6.
J Cosmet Sci ; 68(1): 11-24, 2017.
Article in English | MEDLINE | ID: mdl-29465378

ABSTRACT

Elastin and collagen are extracellular matrix proteins that are widely distributed in the body. Although elastin essentially functions as a skin moisturizer, there have been few reports on its other fundamental chemical and biological functions. In this study, we investigated the moisturizing and whitening (tyrosinase inhibition) effects of elastin to examine its usefulness as a cosmetic material. Water-soluble hot alkali pig aorta (HAPA)-elastin was prepared from pig aorta using the hot alkali method. HAPA-elastin showed a widely distributed molecular weight and had a coacervation property that mediated reversible self-assembly of its molecules with increasing temperature. Amino acid analysis of HAPA-elastin showed a high content (81.5%) of hydrophobic amino acids such as Gly, Ala, Val, and Pro. Des (desmosine) and Ide (isodesmosine), which are characteristic amino acids of elastin, accounted for more than 0.4% of the total amino acid content. HAPA-elastin showed a moisture-retaining property. The water content of skin samples treated with and without HAPA-elastin was 77.2% ± 7.8% and 49.4% ± 10.1%, respectively. HAPA-elastin also inhibited tyrosinase activity by 11.3% ± 3.9%. The results obtained indicate that elastin has a useful function as a cosmetic material.


Subject(s)
Cosmetics/pharmacology , Elastin/pharmacology , Amino Acids/analysis , Animals , Aorta/chemistry , Cells, Cultured , Chromatography, Gel , Cosmetics/chemistry , Elastin/chemistry , Humans , Molecular Weight , Monophenol Monooxygenase/antagonists & inhibitors , Skin/chemistry , Skin/drug effects , Swine , Water/analysis
7.
J Pept Sci ; 22(4): 236-43, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27028208

ABSTRACT

Elastin, a core protein of the elastic fibers, exhibits the coacervation (temperature-dependent reversible association/dissociation) under physiological conditions. Because of this characteristic, elastin and elastin-derived peptides have been considered to be useful as base materials for developing various biomedical products, skin substitutes, synthetic vascular grafts, and drug delivery systems. Although elastin-derived polypeptide (Val-Pro-Gly-Val-Gly)n also has been known to demonstrate coacervation property, a sufficiently high (VPGVG)n repetition number (n>40) is required for coacervation. In the present study, a series of elastin-derived peptide (Phe-Pro-Gly-Val-Gly)5 dimers possessing high coacervation potential were newly developed. These novel dimeric peptides exhibited coacervation at significantly lower concentrations and temperatures than the commonly used elastin-derived peptide analogs; this result suggests that the coacervation ability of the peptides is enhanced by dimerization. Circular dichroism (CD) measurements indicate that the dimers undergo similar temperature-dependent and reversible conformational changes when coacervation occurs. The molecular dynamics calculation results reveal that the sheet-turn-sheet motif involving a type II ß-turn-like structure commonly observed among the dimers and caused formation of globular conformation of them. These synthesized peptide dimers may be useful not only as model peptides for structural analysis of elastin and elastin-derived peptides, but also as base materials for developing various temperature-sensitive biomedical and industrial products.


Subject(s)
Elastin/chemistry , Oligopeptides/chemistry , Amino Acid Sequence , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Conformation , Protein Multimerization
8.
J Pept Sci ; 22(1): 36-42, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26662843

ABSTRACT

Tropoelastin is the primary component of elastin, which forms the elastic fibers that make up connective tissues. The hydrophobic domains of tropoelastin are thought to mediate the self-assembly of elastin into fibers, and the temperature-mediated self-assembly (coacervation) of one such repetitive peptide sequence (VPGVG) has been utilized in various bio-applications. To elucidate a mechanism for coacervation activity enhancement and to develop more potent coacervatable elastin-derived peptides, we synthesized two series of peptide analogs containing an aromatic amino acid, Trp or Tyr, in addition to Phe-containing analogs and tested their functional characteristics. Thus, position 1 of the hydrophobic pentapeptide repeat of elastin (X(1)P(2)G(3)V(4)G(5)) was substituted by Trp or Tyr. Eventually, we acquired a novel, short Trp-containing elastin-derived peptide analog (WPGVG)3 with potent coacervation ability. From the results obtained during this process, we determined the importance of aromaticity and hydrophobicity for the coacervation potency of elastin-derived peptide analogs. Generally, however, the production of long-chain synthetic polypeptides in quantities sufficient for commercial use remain cost-prohibitive. Therefore, the identification of (WPGVG)3, which is a 15-mer short peptide consisting simply of five natural amino acids and shows temperature-dependent self-assembly activity, might serve as a foundation for the development of various kinds of biomaterials.


Subject(s)
Amino Acids, Aromatic/chemistry , Elastin/chemistry , Peptides/chemical synthesis , Solid-Phase Synthesis Techniques/methods , Tropoelastin/chemistry , Amino Acid Sequence , Flocculation , Hydrophobic and Hydrophilic Interactions , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary , Structure-Activity Relationship , Temperature
9.
Protein Pept Lett ; 22(10): 934-9, 2015.
Article in English | MEDLINE | ID: mdl-26310504

ABSTRACT

In this study, we developed a series of Phe-containing elastin-derived peptide-analogs, (Phe-Pro-Gly-Val-Gly)n (n = 1-5) and analyzed their reversible coacervation properties. Compared to the native elastin-derived repeating peptide sequence ((Val-Pro-Gly-Val-Gly)10), one of the Phecontaining 5-mer repeating peptide sequences ((Phe-Pro-Gly-Val-Gly)5) clearly exhibited stronger coacervation properties. The coacervation of (Phe-Pro-Gly-Val-Gly)5 is nearly the same as that of polypeptides (Val-Pro-Gly-Val-Gly)n (n > 40). Although large molecular weights (>10,000 Da) are generally required for the coacervation of elastin-derived peptides, (Phe-Pro-Gly-Val-Gly)5 exhibited reversible coacervation properties despite its low molecular weight (MW = 2,305 Da). High performance liquid chromatography (HPLC) and circular dichroism (CD) analysis revealed that (Phe-Pro-Gly-Val-Gly)5 has high hydrophobicity and an ordered structure with a type II ß-turn, which contributes to the strong coacervation ability of the peptide. In addition, (Phe-Pro-Gly-Val-Gly)5 exhibited an effective particle size distribution (60-70 nm) at body temperature (37°C) and a dispersed small particle size similar to that of the monomer peptides at low temperatures. These properties, along with its small size and simple design, render the peptide suitable for use in biomaterials, including drug-delivery carriers.


Subject(s)
Elastin/chemistry , Peptides/chemistry , Phenylalanine/chemistry , Circular Dichroism , Protein Structure, Secondary
10.
Protein Pept Lett ; 20(8): 905-10, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23409853

ABSTRACT

A series of Ile-containing elastin-derived peptide-analogs, (Ile-Pro-Gly-Val-Gly)n (n = 7-10) possessing remarkable and reversible coacervation property were newly synthesized. In comparison with the known elastin-derived peptide-analogs, which were so-called polypeptides, the obtained 35 to 50 mer peptides, (IPGVG)n (n = 7-10) were significantly low molecular sized-polypeptides. However, they clearly exhibited coacervation property as same as the polypeptides did. Because of their low molecular size, spectrographic analyses of (IPGVG)n (n = 7-10) became feasible to carry out. As results of secondary structural analyses by CD and FT-IR, it was found that the coacervation property of the peptides is clearly attributed to the ordered secondary-structures, mainly, type II ß-turn.


Subject(s)
Elastin/chemistry , Isoleucine/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Protein Conformation , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...