Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 79(20): 1906-12, 2006 Oct 12.
Article in English | MEDLINE | ID: mdl-16815475

ABSTRACT

Although the role of mitochondrial ATP-sensitive potassium (mitoKATP) channels in cardioprotection is widely accepted, it remains unclear when their opening is critical for protection. We tested the hypothesis that the mitoKATP channel acts as a trigger or mediator of protection against apoptosis through loss of mitochondrial inner membrane potential (DeltaPsim). Exposure of neonatal rat cardiomyocytes to H2O2 (0.5 mmol/L) resulted in apoptosis associated with severe DeltaPsim loss. Pretreatment with diazoxide (20 to 100 micromol/L) prevented H2O2-induced apoptosis and DeltaPsim loss at 2 but not 18 h after exposure, while the latter was prevented by cotreatment with diazoxide. Lack of protection by pretreatment with diazoxide was observed in cardiomyocytes cultured in a medium containing H2O2 for 2 h and then not containing for 16 h. The slopes of the regression lines of the relationship between the proportion of apoptotic cells and DeltaPsim loss (y = -0.89 vs. -0.42) and the proportion of cells with high side scatter signal differed between cardiomyocytes exposed H2O2 for 2 and 18 h. Diazoxide per se caused a transient DeltaPsim loss (within 30 min) with a recovery followed by persistent DeltaPsim loss (after 6 h). Inhibition of the former by 5-hydroxydecanoate (5-HD, 0.5 mmol/L) abolished protection of pretreatment with diazoxide (trigger phase), while that of the latter prevented the protection of cotreatment with diazoxide (mediator phase). Our results suggest that mitoKATP channels act as a trigger and mediator of cardioprotection through a transient or persistent DeltaPsim loss depending on phenotypic consequence in response to oxidants.


Subject(s)
Apoptosis/drug effects , Cardiotonic Agents/pharmacology , Diazoxide/pharmacology , Mitochondrial Membranes/drug effects , Myocytes, Cardiac/drug effects , Potassium Channels/physiology , Animals , Decanoic Acids/pharmacology , Hydrogen Peroxide/toxicity , Hydroxy Acids/pharmacology , Membrane Potentials/drug effects , Mitochondria, Heart/drug effects , Mitochondria, Heart/physiology , Mitochondrial Membranes/physiology , Myocytes, Cardiac/physiology , Potassium Channels/drug effects , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...