Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1502: 24-29, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28473202

ABSTRACT

An ion chromatography with post-column derivatization with 1,5-diphenylcarbazide (IC-DPC) analytical method was modified to enable measurement of trace-level hexavalent chromium (Cr(VI)) in air. One of the difficulties in determining trace levels of Cr(VI) in air with conventional IC-DPC methods is co-elution of the solvent and ion peaks due to high concentrations of ionic compounds in the extract. However, by using gradient elution rather than isocratic elution we were able to fully resolve the Cr(VI) ion peak from the solvent peak without the need for diluting the extract, which would have reduced the minimum quantifiable level of the method. With this method, we were able to detect Cr(VI) in air at concentrations of 5.3ng/m3 (assuming a sampling volume of 1m3 and a final solution volume of 10mL). Recovery tests at three different concentrations of Cr(VI) (50, 250, 1000ng) were performed with or without fly ash; recovery rates at all the concentrations of Cr(VI), with or without fly ash, ranged from 68% to 110% (mean±relative standard deviation, 96%±11%), and there were no differences in recovery rates with respect to the presence or absence of fly ash. Finally, we used the developed method to determine the concentration of Cr(VI) in stack gases collected from eight industrial waste incinerators located in Japan. The concentration of Cr(VI) in the stack gases ranged from below the method quantification limit to 3100ng/m3. The highest concentrations of Cr(VI) detected in the stack gases were two to three orders of magnitude higher than that in ambient air in Japan.


Subject(s)
Air Pollutants/analysis , Chromatography , Chromium/analysis , Environmental Monitoring/methods , Gases/chemistry , Industrial Waste/analysis , Ions/chemistry , Japan
2.
Waste Manag ; 29(1): 214-23, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18329262

ABSTRACT

In Japan, most farm animal excreta has been stored directly on farmland. Runoff from this storage has often caused water pollution. Biogasification is anticipated as an important technology to manage excreta properly, but complex problems hinder its introduction. Economic aspects of management have been especially difficult for dairy farmers. For this study, structural problems regarding introduction of biogasification into dairy farming were identified. Subsequently, a desirable system of dairy farming including biogasification was suggested, and an evaluation model of the financial balance was constructed. A case study using current financial balances of several systems of dairy farming was evaluated using the constructed model and actual data. The systems were based on several policy alternatives including the suggested system mentioned above. Results show that a farmer can obtain sufficient income from a system featuring centralization of dairy housing and biogasification facilities and coordinated management by over six farmers.


Subject(s)
Agriculture/economics , Agriculture/organization & administration , Cattle , Environmental Pollution/prevention & control , Waste Management/methods , Agriculture/methods , Animals , Dairying , Japan , Methane , Models, Economic
3.
J Hazard Mater ; 162(1): 328-32, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-18584955

ABSTRACT

We are developing a bioreactor system for treating dioxin-contaminated soil or water using the dioxin-degrading fungus, Pseudallescheria boydii (P. boydii). In order to design the bioreactor system, this study estimated the rate at which P. boydii degraded 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), which is the most toxic of the dioxins. The experimental results showed that P. boydii degraded 2,3,7,8-TCDD during its logarithmic growth phase, using glucose as a carbon source for growth, and that the growth of P. boydii was not affected by 2,3,7,8-TCDD concentrations usually found at contaminated sites. These results were then used to apply successfully an existing mathematical model to the degradation of 2,3,7,8-TCDD by P. boydii. This allowed an estimation of the rate of degradation of 2,3,7,8-TCDD by P. boydii that can be used in the design of the bioreactor system.


Subject(s)
Polychlorinated Dibenzodioxins/metabolism , Pseudallescheria/metabolism , Biodegradation, Environmental , Bioreactors , Culture Media , Glucose/metabolism , Glucose/pharmacology , Kinetics , Models, Statistical , Pseudallescheria/drug effects
4.
Waste Manag ; 29(2): 513-21, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18691865

ABSTRACT

Bottom ash from municipal solid waste incineration (MSWI) is a main type of waste that is landfilled in Japan. The long-term elution of organic matter from the MSWI bottom ash layers is a concern because maintenance and operational costs of leachate treatment facilities are high. In closed system disposal facilities (CSDFs), which have a roof to prevent rainfall from infiltrating into the waste layers, water must be supplied artificially and its quantity can be controlled. However, the quantity of water needed and how to apply it (the intensity, period and frequency) have not been clearly defined. In order to discuss an effective watering plan, this study proposes a new washout model to clarify a fundamental mechanism of total organic carbon (TOC) elution behavior from MSWI bottom ash layers. The washout model considers three phases: solid, immobile water and mobile water. The parameters, including two mass transfer coefficients of the solid-immobile water phases and immobile-mobile water phases, were determined by one-dimensional column experiments for about 2 years. The intensity, period and frequency of watering and other factors were discussed based on a numerical analysis using the above parameters. As a result, our washout model explained adequately the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurred (pH approximately 8.3). The determined parameters and numerical analysis suggested that there is a possibility that the minimum amount of water needed for washing out TOC per unit weight of MSWI bottom ash layer could be determined, which depends on the two mass transfer coefficients and the depth of the MSWI bottom ash layer. Knowledge about the fundamental mechanism of the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurs, clarified by this study, will help an effective watering plan in CSDFs.


Subject(s)
Incineration/instrumentation , Incineration/methods , Organic Chemicals/chemistry , Water/chemistry , Environmental Pollutants/chemistry , Environmental Pollution/prevention & control , Incineration/standards , Japan , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...