Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res ; 37(6): 329-334, 2016.
Article in English | MEDLINE | ID: mdl-28003579

ABSTRACT

Genetically encoded calcium indicators (GECIs) are suitable for long-term imaging studies. In this study, we employed a highly sensitive GECI, G-GECO, and achieved efficient gene delivery with an adenoviral vector. The adenoviral vector allowed us to express G-GECO in more than 80% of cells. More than 80% of G-GECO-expressing cells showed an ATP-induced increase in fluorescence intensity due to Ca2+ release from intracellular stores and subsequent Ca2+ entry. The fluorescence intensity of these cells was increased more than 2-fold by stimulation with 10 µM ATP. We applied long-term imaging (for ~10 h) to monitor Ca2+ responses in SF2, a rat dental epithelial cell line, in culture conditions. SF2 cells showed intermittent rises in the intracellular Ca2+ concentration in the presence of 100 nM 1,25-dihydroxyvitamin D3. Many of these Ca2+ responses began at a specific location in the cytoplasm and spread throughout the entire cytoplasm. The combination of efficient gene delivery with an adenoviral vector and long-term imaging with a highly sensitive GECI enabled detection of intermittent Ca2+ responses that occur only 3-10 times/h/100 cells. This method could be useful to study the effects of Ca2+ responses for regulating longterm processes, such as gene expression, cell migration, and cell division, in many cell types.


Subject(s)
Calcium Signaling/drug effects , Calcium/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Molecular Imaging , Vitamin D/analogs & derivatives , Animals , Cell Line , Gene Expression , Genes, Reporter , Humans , Rats , Vitamin D/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...