Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pure Appl Geophys ; 179(5): 1549-1560, 2022.
Article in English | MEDLINE | ID: mdl-35693640

ABSTRACT

The tsunami caused by the Tonga submarine volcanic eruption that occurred at 13:15 Japan Time (JST) on January 15, 2022, exposed a blind spot in Japan's tsunami monitoring and warning system, which was established in 1952 for local tsunamis and expanded to distant tsunamis after the 1960 Chile tsunami. This paper summarizes how the warning system responded to the unprecedented tsunami, the actual evacuation process, and the damage it caused in Japan. Initially, the tsunami from the volcanic eruption was expected to arrive at approximately midnight with amplitudes of less than 20 cm. However, a series of short waves arrived at approximately 21:00, a few hours earlier than expected. The early arrival of these sea waves coincided with a rapid increase in atmospheric pressure; then, the short-period component was predominant, and the wave height was amplified while forming wave groups. After a 1.2 m tsunami was observed in Amami City in southern Japan at 23:55 JST, the Japan Meteorological Agency issued a tsunami warning/advisory. The tsunami continued, and all advisories were cleared at 14:00 JST on January 16. Information about this tsunami and the response to it are summarized here, including the characteristics and issues of the actual tsunami evacuation situation in each region. There were no casualties, but the issues that emerged included difficulty evacuating on a winter night and traffic congestion due to evacuation by car and under the conditions of the COVID-19 pandemic. In the coastal area, damage to fishing boats and aquaculture facilities was reported due to the flow of the tsunami. In addition, damage to aquaculture facilities, including those producing oysters, scallops, seaweed and other marine products, decreased the supply of marine products, and the economic impact is likely to increase in the future.

2.
Article in English | MEDLINE | ID: mdl-35162119

ABSTRACT

Throughout history, accidental hypothermia has accompanied natural disasters in cold, temperate, and even subtropical regions. We conducted a non-systematic review of the causes and means of preventing accidental hypothermia after natural disasters caused by avalanches, earthquakes, tsunamis, and floods. Before a disaster occurs, preventive measures are required, such as accurate disaster risk analysis for given areas, hazard mapping and warning, protecting existing structures within hazard zones to the greatest extent possible, building structures outside hazard zones, and organising rapid and effective rescue. After the event, post hoc analyses of failures, and implementation of corrective actions will reduce the risk of accidental hypothermia in future disasters.


Subject(s)
Avalanches , Earthquakes , Hypothermia , Floods , Humans , Hypothermia/prevention & control , Japan , Tsunamis
3.
Sci Rep ; 11(1): 20064, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625626

ABSTRACT

Although tsunamis are dispersive water waves, hazard maps for earthquake-generated tsunamis neglect dispersive effects because the spatial dimensions of tsunamis are much greater than the water depth, and dispersive effects are generally small. Furthermore, calculations that include non-dispersive effects tend to predict higher tsunamis than ones that include dispersive effects. Although non-dispersive models may overestimate the tsunami height, this conservative approach is acceptable in disaster management, where the goal is to save lives and protect property. However, we demonstrate that offshore frequency dispersion amplifies tsunamis caused by outer-rise earthquakes, which displace the ocean bottom downward in a narrow area, generating a dispersive short-wavelength and pulling-dominant (water withdrawn) tsunami. We compared observational evidence and calculations of tsunami for a 1933 Mw 8.3 outer-rise earthquake along the Japan Trench. Dispersive (Boussinesq) calculations predicted significant frequency dispersion in the 1933 tsunami. The dispersive tsunami deformation offshore produced tsunami inundation heights that were about 10% larger than those predicted by non-dispersive (long-wave) calculations. The dispersive tsunami calculations simulated the observed tsunami inundation heights better than did the non-dispersive tsunami calculations. Contrary to conventional practice, we conclude that dispersive calculations are essential when preparing deterministic hazard maps for outer-rise tsunamis.

SELECTION OF CITATIONS
SEARCH DETAIL
...