Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
2.
J Bone Miner Metab ; 41(2): 171-181, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36859617

ABSTRACT

INTRODUCTION: Periostin, an extracellular matrix protein, plays an important role in osteogenesis and is also known to activate several signals that contribute to chondrogenesis. The absence of periostin in periostin knockout mice leads to several disorders such as craniosynostosis and periostitis. There are several splice variants with different roles in heart disease and myocardial infarction. However, little is known about each variant's role in chondrogenesis, followed by bone formation. Therefore, the aim of this study is to investigate the role of several variants in chondrogenesis differentiation and bone formation in the craniofacial region. Periostin splice variants included a full-length variant (Control), a variant lacking exon 17 (ΔEx17), a variant lacking exon 21 (ΔEx21), and another variant lacking both exon 17 and 21 ***(ΔEx17&21). MATERIALS AND METHODS: We used C56BL6/N mice (n = 6) for the wild type (Control)*** and the three variant type mice (n = 6 each) to identify the effect of each variant morphologically and histologically. Micro-computed tomography demonstrated a smaller craniofacial skeleton in ΔEx17s, ΔEx21s, and ΔEx17&21s compared to Controls, especially the mandibular bone. We, thus, focused on the mandibular condyle. RESULTS: The most distinctive histological observation was that each defected mouse appeared to have more hypertrophic chondrocytes than Controls. Real-time PCR demonstrated the differences among the group. Moreover, the lack of exon 17 or exon 21 in periostin leads to inadequate chondrocyte differentiation and presents in a diminutive craniofacial skeleton. DISCUSSION: Therefore, these findings suggested that each variant has a significant role in chondrocyte hypertrophy, leading to suppression of bone formation.


Subject(s)
Chondrocytes , Chondrogenesis , Animals , Mice , Bone and Bones , Cell Differentiation/genetics , Chondrocytes/metabolism , Chondrogenesis/genetics , Hypertrophy/genetics , Hypertrophy/metabolism , Hypertrophy/pathology , Mice, Knockout , Osteogenesis/genetics , X-Ray Microtomography
3.
Cells ; 11(21)2022 10 27.
Article in English | MEDLINE | ID: mdl-36359784

ABSTRACT

BACKGROUND: Rhabdomyolysis is the collapse of damaged skeletal muscle and the leakage of muscle-cell contents, such as electrolytes, myoglobin, and other sarcoplasmic proteins, into the circulation. The glomeruli filtered these products, leading to acute kidney injury (AKI) through several mechanisms, such as intratubular obstruction secondary to protein precipitation. The prognosis is highly mutable and depends on the underlying complications and etiologies. New therapeutic plans to reduce AKI are now needed. Up to now, several cellular pathways, with the nuclear factor kappa beta (NF-kB), as well as the proinflammatory effects on epithelial and tubular epithelial cells, have been recognized as the major pathway for the initiation of the matrix-producing cells in AKI. Recently, it has been mentioned that periostin (POSTN), an extracellular matrix protein, is involved in the development of inflammation through the modulation of the NF-kB pathway. However, how POSTN develops the inflammation protection in AKI by rhabdomyolysis is uncertain. This study aimed to investigate the role of POSTN in a rhabdomyolysis mice model of AKI induced by an intramuscular injection of 50% glycerol. METHODS: In vivo, we performed an intramuscular injection of 50% glycerol (5 mg/kg body weight) to make rhabdomyolysis-induced AKI. We examined the expression level of POSTN through the progression of AKI after glycerol intramuscular injection for C57BL/6J wildtype (WT) mice. We sacrificed mice at 72 h after glycerol injection. We made periostin-null mice to examine the role of POSTN in acute renal failure. The role of periostin was further examined through in vitro methods. The development of renal inflammation is linked with the NF-kB pathway. To examine the POSTN function, we administrated hemin (100 µM) on NIH-3T3 fibroblast cells, and the following signaling pathways were examined. RESULTS: The expression of periostin was highly increased, peaking at about 72 h after glycerol injection. The expression of inflammation-associated mRNAs such as monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-a) and IL-6, and tubular injury score in H-E staining were more reduced in POSTN-null mice than WT mice at 72 h after glycerol injection. CONCLUSION: POSTN was highly expressed in the kidney through rhabdomyolysis and was a positive regulator of AKI. Targeting POSTN might propose a new therapeutic strategy against the development of acute renal failure.


Subject(s)
Acute Kidney Injury , Cell Adhesion Molecules , Animals , Mice , Acute Kidney Injury/chemically induced , Acute Kidney Injury/complications , Acute Kidney Injury/pathology , Disease Models, Animal , Glycerol/pharmacology , Inflammation/drug therapy , Inflammation/pathology , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Rhabdomyolysis/complications , Rhabdomyolysis/chemically induced , Rhabdomyolysis/pathology , Cell Adhesion Molecules/drug effects , Cell Adhesion Molecules/metabolism
4.
Front Endocrinol (Lausanne) ; 13: 916374, 2022.
Article in English | MEDLINE | ID: mdl-36060962

ABSTRACT

Background: Proteinuria is an important predictor of cardiovascular disease and mortality. Several studies reported the association between skipping breakfast and the prevalence of proteinuria. Furthermore, skipping breakfast was associated with an increased risk of obesity. Although proteinuria is highly prevalent in obese individuals, the association between the prevalence of proteinuria and low body mass index (BMI) was reported in a previous cross-sectional study in asymptomatic individuals without known kidney diseases. The aim of this cross-sectional study was to assess the clinical impact of BMI on the association between skipping breakfast and the prevalence of proteinuria in normal renal function subjects. Methods: The present study included 26,888 subjects (15,875 males and 11,013 females) with an estimated glomerular filtration rate ≥60 ml/min/1.73 m2 and no history of kidney disease who underwent a health checkup in Sumitomo Hospital. The association between skipping breakfast and the prevalence of proteinuria (defined as dipstick proteinuria of ≥1+) was assessed using logistic regression models adjusted for clinically relevant factors. Results: Skipping breakfast was reported in 3,306 males (20.8%) and 1,514 females (13.8%). Multivariable adjusted logistic regression models showed that skipping breakfast was significantly associated with the prevalence of proteinuria above 1+. This association was evident in lower BMI subjects, even after adjusting for clinically relevant factors (adjusted odds ratios of males and females were 1.67 [1.17-2.38] and 1.92 [1.31-2.82], respectively), whereas this association was not evident in higher BMI subjects. Conclusion: Lower BMI subjects with proteinuria might need to be careful about skipping breakfast.


Subject(s)
Breakfast , Feeding Behavior , Body Mass Index , Cross-Sectional Studies , Female , Humans , Male , Obesity/complications , Obesity/epidemiology , Prevalence , Proteinuria/complications , Proteinuria/etiology , Weight Loss
5.
Cancers (Basel) ; 13(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34680221

ABSTRACT

Periostin (Pn) is involved in multiple processes of cancer progression. Previously, we reported that Pn expression is correlated with mesenchymal tumor markers and poor prognosis in triple-negative breast cancer (TNBC). In the TNBC xenograft model, chemotherapy increased expression of a Pn alternative splicing variant (ASV) with exon 21, and administration of the neutralizing antibody against Pn with exon 21 (Pn-21 Ab) overcame chemoresistance with a reduction in the mesenchymal cancer cell fraction. In the present study, the role of Pn ASV with exon 21 in TNBC progression has been addressed. We first established a stable cell line carrying a fluorescence-based splicing reporter. Pn-positive TNBC has higher expression of genes related to tumor-associated macrophage (TAM) recruitment and ECM-receptor interaction than Pn-negative cells. In a xenograft model, only Pn-positive cells initiated tumor formation, and the Pn-21 Ab suppressed tumor cell growth, accompanied by decreased M2 TAM polarization and the number of tumor vessels. These data suggest that cancer cell-derived Pn ASV educates TAMs and regulates angiogenesis, which in turn establishes a microenvironmental niche that is supportive of TNBC.

6.
Theranostics ; 11(12): 5634-5649, 2021.
Article in English | MEDLINE | ID: mdl-33897872

ABSTRACT

Although a small number of cardiomyocytes may reenter the cell cycle after injury, the adult mammalian heart is incapable of a robust cardiomyocyte proliferation. Periostin, a secreted extracellular matrix protein, has been implicated as a regulator of cardiomyocyte proliferation; however, this role remains controversial. Alternative splicing of the human periostin gene results in 6 isoforms lacking sequences between exons 17 and 21, in addition to full-length periostin. We previously showed that exosomes (Exo) secreted by human cardiac explant-derived progenitor cells (CPC) carried periostin. Here, we aimed to investigate their cell cycle activity. Methods: CPC were derived as the cellular outgrowth of ex vivo cultured cardiac atrial explants. Exo were purified from CPC conditioned medium using size exclusion chromatography. Exosomal periostin was analyzed by Western blotting using a pair of antibodies (one raised against aa 537-836, and one raised against amino acids mapping at exon 17 of human periostin), by ELISA, and by cryo-EM with immune-gold labeling. Cell cycle activity was assessed in neonatal rat cardiomyocytes, in human induced pluripotent stem cell (iPS)-derived cardiomyocytes, and in adult rat cardiomyocytes after myocardial infarction. The role of periostin in cell cycle activity was investigated by transfecting donor CPC with a siRNA against this protein. Results: Periostin expression in CPC-secreted exosomes was detected using the antibody raised against aa 537-836 of the human protein, but not with the exon 17-specific antibody, consistent with an isoform lacking exon 17. Periostin was visualized on vesicle surfaces by cryo-EM and immune-gold labeling. CPC-derived exosomes induced cell proliferation in neonatal rat cardiomyocytes both in vitro and in vivo, in human iPS-derived cardiomyocytes, and in adult rat cardiomyocytes after myocardial infarction. Exo promoted phosphorylation of focal adhesion kinase (FAK), actin polymerization, and nuclear translocation of Yes-associated protein (YAP) in cardiomyocytes. Knocking down of periostin or YAP, or blocking FAK phosphorylation with PF-573228 nullified Exo-induced proliferation. A truncated human periostin peptide (aa 22-669), but not recombinant human full-length periostin, mimicked the pro-proliferative activity of exosomes. Conclusions: Our results show, for the first time, that CPC-secreted exosomes promote cardiomyocyte cell cycle-reentry via a short periostin isoform expressed on their surfaces, whereas recombinant full-length periostin does not. These findings highlight isoform-specific roles of periostin in cardiomyocyte proliferation.


Subject(s)
Cell Adhesion Molecules/metabolism , Cell Proliferation/physiology , Exosomes/metabolism , Myocytes, Cardiac/metabolism , Protein Isoforms/metabolism , Aged , Aged, 80 and over , Animals , Cell Cycle/physiology , Cells, Cultured , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Middle Aged , Myocardial Infarction/metabolism , Rats , Rats, Wistar
7.
Cells ; 10(4)2021 04 14.
Article in English | MEDLINE | ID: mdl-33919736

ABSTRACT

BACKGROUND: Periostin (POSTN) is a 93 kDa matrix protein that helps to regulate collagen gene expression in the extracellular matrix. POSTN overexpression is a prognostic factor in malignant cancers; however, some researchers have observed it in the stroma, whereas others have reported it on tumors. OBJECTIVE: This study aimed to investigate the function of POSTN on tumors. METHODS AND RESULTS: We found that POSTN in cancer cells can be detected by using an antibody against the POSTN C-terminal region exon 17 (Ex17 antibody), but not with an antibody against the POSTN N-terminal region exon 12 (Ex12 antibody) in patients with breast cancer. In a fraction secreted from fibroblasts, LC-MS/MS analysis revealed a short fragment of POSTN of approximately 40 kDa with exon 17. In addition, molecular interaction analysis showed that POSTN with exon 17, but not POSTN without exon 17, bound specifically to wnt3a, and the Ex17 antibody inhibited the binding. CONCLUSION: A short fragment of POSTN with exon 17, which originates in the fibroblasts, is transported to cancer cells, whereas POSTN fragments without exon 17 are retained in the stroma. The Ex17 antibody inhibits the binding between POSTN exon 17 and wnt3a.


Subject(s)
Alternative Splicing/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Adhesion Molecules/genetics , Exons/genetics , Amino Acid Sequence , Animals , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Female , Humans , Mice, Inbred C57BL , Models, Biological , Neoplasm Metastasis , Protein Binding , Proteomics , Wnt3A Protein/metabolism
8.
Front Endocrinol (Lausanne) ; 12: 805244, 2021.
Article in English | MEDLINE | ID: mdl-35069451

ABSTRACT

Background: Adipokine dysregulation is a key feature of insulin resistance and a metabolic syndrome associated with obesity. Low adiponectin levels are associated with higher risks of cardiovascular diseases (CVD). However, high adiponectin levels have also been associated with increased all-cause and cardiovascular mortality in the elderly. This adiponectin paradox has yet to be clarified, which has hindered our understanding of the biological role of adiponectin. Adipokine dysregulation and insulin resistance are also associated with energy-deprivation conditions, such as frailty in old age. The objective of this study was to investigate the association between plasma adiponectin and insulin resistance using the homeostasis model assessment for insulin resistance (HOMA-IR) classified by age. In particular, we sought to determine the factors of the subjects associated with both high adiponectin levels and HOMA-IR (H-adiponectin/H-HOMA) and high adiponectin levels and low HOMA-IR (H-adiponectin/L-HOMA). Methods: The eligible subjects in this cross-sectional study were 33,216 individuals who had undergone health checkups at the Physical Checkup Center of Sumitomo Hospital between April 2008 and December 2018. After excluding 26,371 individuals who were under 60 years old, 529 who had been taking medications for diabetes mellitus, and 690 with missing data, the present study included 5,673 (3,467 males, 2,206 females) subjects with no missing data. The relationship between serum adiponectin levels and HOMA-IR was assessed using logistic regression models adjusted by clinically relevant factors. Results: In the multivariable logistic regression analysis, age and low BMI were shown to positively correlate with the characteristics of H-adiponectin/H-HOMA. In females, systolic blood pressure was also shown to be an associated factor. Conclusion: In conclusion, this study showed that aging or a low BMI may contribute to high adiponectin levels and insulin resistance.


Subject(s)
Adiponectin/blood , Aging , Insulin Resistance , Aged , Blood Pressure , Body Mass Index , Cross-Sectional Studies , Female , Humans , Male
9.
Ann Vasc Dis ; 13(2): 109-115, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32595785

ABSTRACT

Hepatocyte growth factor (HGF) is secreted from stromal and mesenchymal cells, and its receptor cMet is expressed on various types of cells such as smooth muscle cells, fibroblast, and endothelial cells. HGF stimulates epithelial and endothelial cell proliferation, motility, and morphogenesis in a paracrine and autocrine manner, organizing multistep of angiogenesis in many organs. In addition, HGF is recognized as a potent anti-inflammatory and anti-fibrotic growth factor, which has been proved in several animal studies, including neointimal hyperplasia and acute myocardial infarction model in rodent. Thus, as compared to other angiogenic growth factors, HGF exerts multiple effects on ischemic tissues, accompanied by the regression of tissue inflammation and fibrosis. These data suggest the therapeutic potential of the HGF for peripheral artery disease as it being accompanied with chronic tissue inflammation and fibrosis. In the present narrative review, the pleiotropic action of the HGF that differentiates it from other angiogenic growth factors is discussed first, and later, outcomes of the human clinical study with gene therapy are overviewed.

10.
Front Cardiovasc Med ; 5: 12, 2018.
Article in English | MEDLINE | ID: mdl-29564335

ABSTRACT

Aging is a complex process that results from a combination of environmental, genetic, and epigenetic factors. A chronic pro-inflammatory status is a pervasive feature of aging. This chronic low-grade inflammation occurring in the absence of overt infection has been defined as "inflammaging" and represents a significant risk factor for morbidity and mortality in the elderly. The low-grade inflammation persists even after reversing pro-inflammatory stimuli such as LDL cholesterol and the renin-angiotensin system (RAS). Recently, several possible sources of chronic low-grade inflammation observed during aging and age-related diseases have been proposed. Cell senescence and dysregulation of innate immunity is one such mechanism by which persistent prolonged inflammation occurs even after the initial stimulus has been removed. Additionally, the coagulation factor that activates inflammatory signaling beyond its role in the coagulation system has been identified. This signal could be a new source of chronic inflammation and cell senescence. Here, we summarized the factors and cellular pathways/processes that are known to regulate low-grade persistent inflammation in aging and age-related disease.

11.
Article in English | MEDLINE | ID: mdl-29515523

ABSTRACT

Cellular senescence is the complex process of deterioration that drives the aging of an organism, resulting in the progressive loss of organ function and eventually phenotypic aging. Senescent cells undergo irreversible growth arrest, usually by inducing telomere shortening. Alternatively, senescence may also occur prematurely in response to various stress stimuli, such as oxidative stress, DNA damage, or activated oncogenes. Recently, it has been shown that IGF binding protein-5 (IGFBP-5) with the induction of the tumor suppressor p53 is upregulated during cellular senescence. This mechanism mediates interleukin-6/gp130-induced premature senescence in human fibroblasts, irradiation-induced premature senescence in human endothelial cells (ECs), and replicative senescence in human ECs independent of insulin-like growth factor I (IGF-I) and IGF-II. Additionally, a link between IGFBP-5, hyper-coagulation, and inflammation, which occur with age, has been implicated. Thus, IGFBP-5 seems to play decisive roles in controlling cell senescence and cell inflammation. In this review, we describe the accumulating evidence for this role of IGFBP-5 including our new finding.

12.
Sci Rep ; 8(1): 4013, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29507310

ABSTRACT

Recent studies suggest a functional involvement of Epithelial-Mesenchymal Transition (EMT) in tumor chemoresistance. Specifically, EMT is associated with chemoresistance and poor prognosis in triple-negative breast cancer. However, no effective therapy targeting EMT has been developed. Here, we report that periostin, an extracellular matrix protein, was induced upon chemotherapy and tightly correlated with the EMT gene signature and poor prognosis in breast cancer. In triple-negative breast cancer xenografts, chemotherapy upregulated periostin expression in tumor cells, triggered expansion of mesenchymal tumor cells and promoted invasion in residual tumors. Knockdown of periostin inhibited outgrowth and invasion of mesenchymal tumor cells upon chemotherapy. Furthermore, chemotherapy upregulated cancer-specific variants of periostin and application of a blocking antibody specifically targeting those variants overcame chemoresistance and halted disease progression without toxicity. Together, these data indicate that periostin plays a key role in EMT-dependent chemoresistance and is a promising target to overcome chemoresistance in triple-negative breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Adhesion Molecules/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Epithelial-Mesenchymal Transition/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Animals , Cell Adhesion Molecules/genetics , Cell Proliferation/drug effects , Female , Gene Knockdown Techniques , Humans , Mice , Xenograft Model Antitumor Assays
13.
Medicines (Basel) ; 5(2)2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29601487

ABSTRACT

The World Health Organization announced that cardiovascular disease is the number one cause of death globally, representing 31% of all global deaths. Coronary artery disease (CAD) affects approximately 5% of the US population aged 40 years and older. With an age-adjusted prevalence of approximately 12%, peripheral artery disease (PAD) affects at least 8 to 12 million Americans. Both CAD and PAD are caused by mainly atherosclerosis, the hardening and narrowing of arteries over the years by lipid deposition in the vascular bed. Despite the significant advances in interventions for revascularization and intensive medical care, patients with CAD or PAD who undergo percutaneous transluminal angioplasty have a persistent high rate of myocardial infarction, amputation, and death. Therefore, new therapeutic strategies are urgently needed for these patients. To overcome this unmet need, therapeutic angiogenesis using angiogenic growth factors has evolved in an attempt to stimulate the growth of new vasculature to compensate for tissue ischemia. After nearly 20 years of investigation, there is growing evidence of successful or unsuccessful gene therapy for ischemic heart and limb disease. This review will discuss basic and clinical data of therapeutic angiogenesis studies employing angiogenic growth factors for PAD patients and will draw conclusions on the basis of our current understanding of the biological processes of new vascularization.

14.
Sci Rep ; 7(1): 17172, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29215061

ABSTRACT

Our previous study demonstrated that coagulation factor Xa (FXa) induced endothelial cell senescence, resulting in inflammation and impaired angiogenesis. This mechanism is dictated through protease-activated receptors, PARs, insulin-like growth factor-binding protein 5 (IGFBP-5), and p53. Activation of PARs contributes to the pathophysiology of several chronic inflammatory diseases, including atherosclerosis. Thus, we speculated that similar mechanism might participate in the progression of atherosclerotic plaques. In the present study, we successfully identified the cells that produced FX/Xa in atherosclerosis using human atherosclerotic plaques obtained from carotid endarterectomy. In situ hybridization for FX revealed that FX was generated in vascular smooth muscle cells (VSMC), inflammatory cells, and endothelial cells. Then, we examined the effects of FXa on the growth of VSMC in vitro. The present study revealed that chronic FXa stimulation significantly induced the senescence of VSMC with concomitant upregulation of IGFBP-5 and p53. Inhibition of FXa signaling with rivaroxaban or knock down of IGFBP-5 significantly reduced FXa-induced VSMC senescence and inflammatory cytokine production. Finally, we confirmed that FXa and IGFBP-5 are co-distributed in atherosclerotic plaques. In conclusion, induction of senescence of VSMC induced by locally produced FX/Xa may contribute to the progression of atherosclerosis.


Subject(s)
Cellular Senescence , Factor Xa/metabolism , Insulin-Like Growth Factor Binding Protein 5/metabolism , Muscle, Smooth, Vascular/pathology , Plaque, Atherosclerotic/pathology , Cells, Cultured , Humans , Muscle, Smooth, Vascular/metabolism , Plaque, Atherosclerotic/metabolism , Signal Transduction
15.
Sci Rep ; 7(1): 130, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28273932

ABSTRACT

Obesity and its associated chronic inflammation in adipose tissue initiate insulin resistance, which is related to several pathologies including hypertension and atherosclerosis. Previous reports demonstrated that circulating hepatocyte growth factor (HGF) level was associated with obesity and type 2 diabetes. However, its precise role in obesity and related-pathology is unclear. In this experiment, cardiac-specific over-expression of human HGF in mice (HGF-Tg mice) which showed 4-5 times higher serum HGF levels than wild-type mice were used. While body weight in wild-type mice fed with high fat diet (HFD) for 14 weeks was significantly increased accompanied with insulin resistance, HGF-Tg mice prevented body weight gain and insulin resistance. The accumulation of macrophages and elevated levels of inflammatory mediators in adipose tissue were significantly inhibited in HGF-Tg mice as compared to wild-type mice. The HFD-induced obesity in wild-type mice treated with HGF-neutralizing antibody showed an exacerbated response to the glucose tolerance test. These gain-of-function and loss-of-function studies demonstrated that the elevated HGF level induced by HFD have protective role against obesity and insulin resistance.


Subject(s)
Diet, High-Fat , Hepatocyte Growth Factor/metabolism , Inflammation/metabolism , Insulin Resistance , Obesity/metabolism , Adipose Tissue/metabolism , Animals , Blood Glucose , Body Weight , Humans , Inflammation/complications , Inflammation Mediators/metabolism , Insulin/blood , Male , Mice, Inbred C57BL , Obesity/complications
17.
Sci Rep ; 6: 35580, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27752126

ABSTRACT

Uncontrolled coagulation contributes to the pathophysiology of several chronic inflammatory diseases. In these conditions, senescent cells are often observed and is involved in the generation of inflammation. The coincidence of hyper-coagulation, cell senescence, and inflammation suggests the existence of a common underlying mechanism. Recent evidence indicates that activated coagulation factor X (FXa) plays a role in the processes beyond blood coagulation. This non-hematologic function entails the mediation of inflammation and tissue remodeling. We therefore tested the hypothesis that FXa induces cell senescence resulting in tissue inflammation and impaired tissue regeneration. Human umbilical vein endothelial cells were stimulated with FXa for 14 days. The proliferation of cells treated with FXa was significantly smaller, and the fraction of senescence-associated ß-galactosidase-positive cells was increased as compared to the control group. RT-qPCR array revealed that FXa increased the expression of IGFBP-5, EGR-1, p53, and p16INK4a. Inhibition of FXa by a direct FXa inhibitor, rivaroxaban, or IGFBP-5 by siRNA decreased FXa-induced cell senescence, restoring cell proliferation. Moreover, in an ischemic hind limb mouse model, FXa inhibited neovascularization by endothelial progenitor cell. However, rivaroxaban significantly restored FXa-induced impaired angiogenesis. In summary, FXa induced endothelial cell senescence through IGFBP-5, resulting in impaired angiogenesis.


Subject(s)
Cellular Senescence/drug effects , Factor Xa/pharmacology , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Insulin-Like Growth Factor Binding Protein 5/metabolism , Animals , Cell Proliferation/drug effects , Cytokines/metabolism , Factor Xa/administration & dosage , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Inflammation/pathology , Male , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Regeneration/drug effects
18.
Exp Eye Res ; 153: 133-140, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27744020

ABSTRACT

Retinal neovascularization (NV) due to retinal ischemia is one of the major causes of vision reduction in patients with different types of retinal diseases although anti-vascular endothelial growth factor (anti-VEGF) therapy can partially reduce the size of the retinal NV. We recently reported that periostin plays an important role in the development of NV and the formation of preretinal fibrovascular membranes, but the role of the splice variants of periostin on retinal NV has not been determined. We examined the expressions of periostin splice variants in the ischemic retinas of a mouse model of oxygen-induced retinal NV. We also studied the function of periostin splice variants on retinal NV using periostin knock out mice, and the effects of anti-periostin antibodies on retinal NV. Our results showed that the expressions of the periostin splice variants were increased in ischemic retinas. The degree of increase of periostin lacking exon 17 was the highest among the periostin splice variants examined. Both genetic ablation of periostin exons 17 and 21 and antibodies for periostin exons 17 and 21 affected preretinal pathological NV. Inhibition of exon 17 of periostin had the greatest effect in reducing preretinal pathological NV. These findings suggest a causal link between periostin splice variants and retinal NV, and an intravitreal injection of antibody for exon 17 and exon 21 of periostin should be considered to inhibit preretinal pathological NV.


Subject(s)
Cell Adhesion Molecules/genetics , Gene Expression Regulation , Genetic Therapy/methods , RNA/genetics , Retina/metabolism , Retinal Neovascularization/genetics , Animals , Blotting, Western , Cell Adhesion Molecules/metabolism , Cell Movement , Cells, Cultured , Disease Models, Animal , Exons , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA Splicing , Real-Time Polymerase Chain Reaction , Retina/pathology , Retinal Neovascularization/metabolism , Retinal Neovascularization/therapy
19.
Hypertens Res ; 39(11): 764-768, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27334059

ABSTRACT

Chronic hypertension causes vascular remodeling that is associated with an increase in periostin- (postn) positive cells, including fibroblasts and smooth muscle cells. Krüppel-like factor (KLF) 5, a transcription factor, is also observed in vascular remodeling; however, it is unknown what role KLF5 plays in postn-positive cells during vascular remodeling induced by deoxycorticosterone-acetate (DOCA) salt. We used postn-positive cell-specific Klf5-deficient mice (Klf5PostnKO: Klf5flox/flox; PostnCre/-) and wild-type mice (WT: Klf5flox/flox; Postn-/-). We implanted a DOCA pellet and provided drinking water containing 0.9% NaCl for 8 weeks. The DOCA-salt treatment induced hypertension in both genotypes, as observed by increases in systolic blood pressure. In WT animals, DOCA-salt treatment increased the aortic medial area compared with the non-treated controls. Similarly, Tgfb1 was overexpressed in the aortas of the DOCA-salt treated WT mice compared with the controls. Immunofluorescence staining revealed that fibroblast-specific protein 1 (FSP1)+-α smooth muscle actin (αSMA)+ myofibroblasts exist in the medial area of the WT aortas after DOCA-salt intervention. Importantly, these changes were not observed in the Klf5PostnKO animals. In conclusion, the results of this study suggest that the presence of KLF5 in postn-positive cells contributes to the pathogenesis of aortic thickening induced by DOCA-salt hypertension.


Subject(s)
Aorta/metabolism , Cell Adhesion Molecules/metabolism , Hypertension/genetics , Kruppel-Like Transcription Factors/genetics , Vascular Remodeling/genetics , Animals , Blood Pressure/physiology , Desoxycorticosterone Acetate , Hypertension/chemically induced , Hypertension/metabolism , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, Knockout , Myofibroblasts/metabolism , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism
20.
Arterioscler Thromb Vasc Biol ; 36(3): 545-52, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26769045

ABSTRACT

OBJECTIVE: Peripheral arterial disease is highly prevalent in the elderly and in the subjects with cardiovascular risk factors such as diabetes. Approximately 2% to 4% of those affected with peripheral arterial disease commonly complain of intermittent claudication. Cilostazol, a type III phosphodiesterase inhibitor, is the only Food and Drug Administration-approved drug for the treatment of intermittent claudication. Cilostazol has been shown to be beneficial for the improvement of pain-free walking distance in patients with intermittent claudication in a series of randomized clinical trials. However, the underlying mechanism how cilostazol improved intermittent claudication symptoms is still unclear. APPROACH AND RESULTS: In this study, the effect of cilostazol on ischemic leg was investigated in mouse ischemic hindlimb model. Administration of cilostazol significantly increased the expression of hepatocyte growth factor (HGF), vascular endothelial growth factor, angiopoietin-1, and peroxisome proliferator-activated receptor-γ in vasculature. The capillary density in ischemic leg was also significantly increased in cilostazol treatment group when compared with control and aspirin treatment group. However, an increase in capillary density and the expression of growth factors was almost completely abolished by coadministration of HGF-neutralizing antibody, suggesting that cilostazol enhanced angiogenesis mainly through HGF. In vitro experiment revealed that cilostazol treatment increased HGF production in vascular smooth muscle cells via 2 major pathways: peroxisome proliferator-activated receptor-γ and cAMP pathways. CONCLUSIONS: Our data suggest that the favorable effects of cilostazol on ischemic leg might be through the angiogenesis through the induction of HGF via peroxisome proliferator-activated receptor-γ and cAMP pathways.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Cyclic AMP/metabolism , Ischemia/drug therapy , Muscle, Skeletal/blood supply , Neovascularization, Physiologic/drug effects , PPAR gamma/agonists , Phosphodiesterase 3 Inhibitors/pharmacology , Second Messenger Systems , Tetrazoles/pharmacology , Angiopoietin-1/metabolism , Animals , Capillaries/drug effects , Capillaries/enzymology , Capillaries/physiopathology , Cells, Cultured , Cilostazol , Disease Models, Animal , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Hindlimb , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/enzymology , Ischemia/enzymology , Ischemia/genetics , Ischemia/physiopathology , Mice, Inbred C57BL , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/enzymology , PPAR gamma/metabolism , Rats , Time Factors , Transfection , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...