Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(3): 036904, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38307066

ABSTRACT

Acoustically induced dressed states of long-lived erbium ions in a crystal are demonstrated. These states are formed by rapid modulation of two-level systems via strain induced by surface acoustic waves whose frequencies exceed the optical linewidth of the ion ensemble. Multiple sidebands and the reduction of their intensities appearing near the surface are evidence of a strong interaction between the acoustic waves and the ions. This development allows for on-chip control of long-lived ions and paves the way to highly coherent hybrid quantum systems with telecom photons, acoustic phonons, and electrons.

2.
Nanotechnology ; 33(15)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34969026

ABSTRACT

Overlayer growth of graphene on an epitaxial graphene/silicon carbide (SiC) as a solid template by ethanol chemical vapor deposition is performed over a wide growth temperature range from 900 °C to 1450 °C. Structural analysis using atomic force and scanning tunneling microscopies reveal that graphene islands grown at 1300 °C form hexagonal twisted bilayer graphene as a single crystal. When the growth temperature exceeds 1400 °C, the grown graphene islands show a circular shape. Moreover, moiré patterns with different periods are observed in a single graphene island. This means that the graphene islands grown at high temperature are composed of several graphene domains with different twist angles. From these results, we conclude that graphene overlayer growth on the epitaxial graphene/SiC solid at 1300 °C effectively synthesizes the twisted few-layer graphene with a high crystallinity.

3.
ACS Nano ; 15(9): 14384-14393, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34519487

ABSTRACT

Vertically stacked two-dimensional van der Waals (vdW) heterostructures with specific interlayer angles exhibit peculiar physical properties. Nowadays, most of the stacked layers are fabricated by mechanical exfoliation followed by precise transfer and alignment with micrometer spatial accuracy. This stringent ingredient of sample preparation limits the productivity of device fabrication and the reproducibility of device performance. Here, we demonstrate the one-pot chemical vapor deposition growth of hexagonal boron nitride (hBN)/graphene bilayers with a high-purity moiré phase. The epitaxial intercalation of graphene under a hydrogen-terminated hBN template leads to convergent interlayer angles of less than 0.5°. The near 0° stacking angle shows almost 2 orders of magnitude higher likelihood of occurrence compared with angles larger than 0.5°. The bilayers show a substantial enhancement of carrier mobility compared with monolayer graphene owing to protection from the top hBN layer. Our work proposes a large-scale fabrication method of hBN/graphene bilayers with a high uniformity and controlled interlayer rotation and will promote the production development for high-quality vdW heterostructures.

4.
Nat Commun ; 11(1): 4969, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33037206

ABSTRACT

Magnetic Weyl semimetals have novel transport phenomena related to pairs of Weyl nodes in the band structure. Although the existence of Weyl fermions is expected in various oxides, the evidence of Weyl fermions in oxide materials remains elusive. Here we show direct quantum transport evidence of Weyl fermions in an epitaxial 4d ferromagnetic oxide SrRuO3. We employ machine-learning-assisted molecular beam epitaxy to synthesize SrRuO3 films whose quality is sufficiently high to probe their intrinsic transport properties. Experimental observation of the five transport signatures of Weyl fermions-the linear positive magnetoresistance, chiral-anomaly-induced negative magnetoresistance, π phase shift in a quantum oscillation, light cyclotron mass, and high quantum mobility of about 10,000 cm2V-1s-1-combined with first-principles electronic structure calculations establishes SrRuO3 as a magnetic Weyl semimetal. We also clarify the disorder dependence of the transport of the Weyl fermions, which gives a clear guideline for accessing the topologically nontrivial transport phenomena.

5.
Adv Mater ; 31(24): e1900880, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31034137

ABSTRACT

The ability to control the crystal orientation of 2D van der Waals (vdW) layered materials grown on large-scale substrates is crucial for tailoring their electrical properties, as well as for integration of functional 2D devices. In general, multiple orientations, i.e., two or four orientations, appear through the crystal rotational symmetry matching between the material and its substrate. Here, it is reported that hexagonal boron nitride (h-BN), an ideal electric barrier in the family of 2D materials, has a single orientation on inclined Cu (1 0 1) surfaces, where the Cu planes are tilted from the (1 0 1) facet around specific in-plane axes. Density functional theory (DFT) calculation indicates that this is a manifestation of only one favored h-BN orientation with the minimum vdW energy on the inclined Cu (1 0 1) surface. Moreover, thanks to the high interfacial strength with the underlying Cu, the single-orientation h-BN is free of thermal wrinkles, and exhibits a spatially homogeneous morphology and tunnel conductance. The findings point to a feasible approach to direct growth of single-orientation, wrinkle-free h-BN thin film for high-performance 2D electrical devices, and will be of benefit for controllable synthesis of other vdW materials.

6.
Nat Commun ; 10(1): 535, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30755601

ABSTRACT

Magnetic insulators have wide-ranging applications, including microwave devices, permanent magnets and future spintronic devices. However, the record Curie temperature (TC), which determines the temperature range in which any ferri/ferromagnetic system remains stable, has stood still for over eight decades. Here we report that a highly B-site ordered cubic double-perovskite insulator, Sr3OsO6, has the highest TC (of ~1060 K) among all insulators and oxides; also, this is the highest magnetic ordering temperature in any compound without 3d transition elements. The cubic B-site ordering is confirmed by atomic-resolution scanning transmission electron microscopy. The electronic structure calculations elucidate a ferromagnetic insulating state with Jeff = 3/2 driven by the large spin-orbit coupling of Os6+ 5d2 orbitals. Moreover, the Sr3OsO6 films are epitaxially grown on SrTiO3 substrates, suggesting that they are compatible with device fabrication processes and thus promising for spintronic applications.

7.
Nature ; 555(7695): 172-173, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29517016
8.
Nature ; 555(7695): 172-173, 2018 Mar.
Article in English | MEDLINE | ID: mdl-32095017
9.
Nature ; 441(7091): 325-8, 2006 May 18.
Article in English | MEDLINE | ID: mdl-16710416

ABSTRACT

Compact high-efficiency ultraviolet solid-state light sources--such as light-emitting diodes (LEDs) and laser diodes--are of considerable technological interest as alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. Microelectronic fabrication technologies and the environmental sciences both require light sources with shorter emission wavelengths: the former for improved resolution in photolithography and the latter for sensors that can detect minute hazardous particles. In addition, ultraviolet solid-state light sources are also attracting attention for potential applications in high-density optical data storage, biomedical research, water and air purification, and sterilization. Wide-bandgap materials, such as diamond and III-V nitride semiconductors (GaN, AlGaN and AlN; refs 3-10), are potential materials for ultraviolet LEDs and laser diodes, but suffer from difficulties in controlling electrical conduction. Here we report the successful control of both n-type and p-type doping in aluminium nitride (AlN), which has a very wide direct bandgap of 6 eV. This doping strategy allows us to develop an AlN PIN (p-type/intrinsic/n-type) homojunction LED with an emission wavelength of 210 nm, which is the shortest reported to date for any kind of LED. The emission is attributed to an exciton transition, and represents an important step towards achieving exciton-related light-emitting devices as well as replacing gas light sources with solid-state light sources.

SELECTION OF CITATIONS
SEARCH DETAIL
...