Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Aerosp Med Hum Perform ; 94(1): 3-10, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36757237

ABSTRACT

INTRODUCTION: A flight trial was conducted to determine whether breathing 60% oxygen during high performance flight maneuvers using contemporary pilot flight equipment induces atelectasis and to explore whether cabin altitude had any influence on the extent of atelectasis identified.METHODS: On 2 separate days, 14 male aircrew flew as passengers at High [14,500-18,000 ft (4420-5486 m)] and Low [4000-6000 ft (1219-1829 m)] cabin pressure altitude in a Hawk T Mk1 aircraft breathing 60% oxygen. Sorties comprised 16 maneuvers at +5 Gz, each sustained for 30 s. Lung volumes (spirometry), basal lung volume (electrical impedance tomography, EIT), and peripheral oxygen saturation during transition from hyperoxia to hypoxia (pulmonary shunt fraction) were measured in the cockpit immediately before (Pre) and after (Post) flight.RESULTS: Forced inspiratory vital capacity (FIVC) was significantly lower Postflight after High (-0.24 L) and Low (-0.38 L) sorties, but recovered to Preflight values by the fourth repeat (FIVC4). EIT-derived measures of FIVC decreased after High (-3.3%) and Low (-4.4%) sorties but did not recover to baseline by FIVC4. FIVC reductions were attributable to decreased inspiratory capacity. Spo2 was lower Postflight than Preflight in High and Low sorties.DISCUSSION: Breathing 60% oxygen during flight results in a 3.8-4.9% reduction in lung volume associated with a small decrease in blood oxygenation and an estimated pulmonary shunt of up to 5.7%. EIT measures suggest persisting airway closure despite repeated FIVC maneuvers. There was no meaningful influence of cabin pressure altitude. The operational consequence of the observed changes is likely to be small.Tank H, Kennedy G, Pollock R, Hodkinson P, Sheppard-Hickey R-A, Woolford J, Green NDC, Stevenson A. Cabin pressure altitude effect on acceleration atelectasis after agile flight breathing 60% oxygen. Aerosp Med Hum Perform. 2023; 94(1):3-10.


Subject(s)
Aerospace Medicine , Pulmonary Atelectasis , Humans , Male , Oxygen , Altitude , Respiration , Hypoxia , Aircraft , Acceleration
2.
Aerosp Med Hum Perform ; 92(8): 633-641, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34503616

ABSTRACT

AbstractBACKGROUND: Members of the public will soon be taking commercial suborbital spaceflights with significant Gx (chest-to-back) acceleration potentially reaching up to 6 Gx. Pulmonary physiology is gravity-dependent and is likely to be affected, which may have clinical implications for medically susceptible individuals.METHODS: During 2-min centrifuge exposures ranging up to 6 Gx, 11 healthy subjects were studied using advanced respiratory techniques. These sustained exposures were intended to allow characterization of the underlying pulmonary response and did not replicate actual suborbital G profiles. Regional distribution of ventilation in the lungs was determined using electrical impedance tomography. Neural respiratory drive (from diaphragm electromyography) and work of breathing (from transdiaphragmatic pressures) were obtained via nasoesophageal catheters. Arterial blood gases were measured in a subset of subjects. Measurements were conducted while breathing air and breathing 15 oxygen to simulate anticipated cabin pressurization conditions.RESULTS: Acceleration caused hypoxemia that worsened with increasing magnitude and duration of Gx. Minimum arterial oxygen saturation at 6 Gx was 86 1 breathing air and 79 1 breathing 15 oxygen. With increasing Gx the alveolar-arterial (A-a) oxygen gradient widened progressively and the relative distribution of ventilation reversed from posterior to anterior lung regions with substantial gas-trapping anteriorly. Severe breathlessness accompanied large progressive increases in work of breathing and neural respiratory drive.DISCUSSION: Sustained high-G acceleration at magnitudes relevant to suborbital flight profoundly affects respiratory physiology. These effects may become clinically important in the most medically susceptible passengers, in whom the potential role of centrifuge-based preflight evaluation requires further investigation.Pollock RD, Jolley CJ, Abid N, Couper JH, Estrada-Petrocelli L, Hodkinson PD, Leonhardt S, Mago-Elliott S, Menden T, Rafferty G, Richmond G, Robbins PA, Ritchie GAD, Segal MJ, Stevenson AT, Tank HD, Smith TG. Pulmonary effects of sustained periods of high-G acceleration relevant to suborbital spaceflight. Aerosp Med Hum Perform. 2021; 92(7):633641.


Subject(s)
Aerospace Medicine , Space Flight , Acceleration , Centrifugation , Gravitation , Humans
3.
Physiol Meas ; 42(9)2021 09 27.
Article in English | MEDLINE | ID: mdl-34375953

ABSTRACT

Objective. During launch and atmospheric re-entry in suborbital space flights, astronauts are exposed to high G-acceleration. These acceleration levels influence gas exchange inside the lung and can potentially lead to hypoxaemia. The distribution of air inside the lung can be monitored by electrical impedance tomography. This imaging technique might reveal how high gravitational forces affect the dynamic behavior of ventilation and impair gas exchange resulting in hypoxaemia.Approach. We performed a trial in a long-arm centrifuge with ten participants lying supine while being exposed to +2, +4 and +6 Gx(chest-to-back acceleration) to study the magnitude of accelerations experienced during suborbital spaceflight.Main results. First, the tomographic images revealed that the dorsal region of the lung emptied faster than the ventral region. Second, the ventilated area shifted from dorsal to ventral. Consequently, alveolar pressure in the dorsal area reached the pressure of the upper airways before the ventral area emptied completely. Finally, the upper airways collapsed and the end-expiratory volume increased. This resulted in ventral gas trapping with restricted gas exchange.Significance. At +4 Gx, changes in ventilation distribution varied considerably between subjects, potentially due to variation in individual physical conditions. However, at +6 Gxall participants were affected similarly and the influence of high gravitational conditions was pronounced.


Subject(s)
Lung , Tomography , Acceleration , Electric Impedance , Humans , Lung/diagnostic imaging , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...