Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 9(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37998997

ABSTRACT

In the present research work, pectin was isolated from the peels of seven citrus fruits (Citrus limon, Citrus limetta, Citrus sinensis, Citrus maxima, Citrus jambhiri, Citrus sudachi, and Citrus hystrix) for a comparison of its physicochemical parameters and its potential use as a thickening agent, gelling agent, and food ingredient in food industries. Among the seven citrus fruits, the maximum yield of pectin was observed from Citrus sudachi, and the minimum yield of pectin was observed from Citrus maxima. The quality of each pectin sample was compared by using parameters such as equivalent weight, anhydrouronic acid (AUA) content, methoxy content, and degree of esterification. It was observed that all seven pectin samples had a high value of equivalent weight (more than 1000), suggesting that all the pectin samples had a high content of non-esterified galacturonic acid in the molecular chains, which provides viscosity and water binding properties. The methoxy content and degree of esterification of all the pectins was lower than 50%, which suggests that it cannot easily disperse in water and can form gel only in presence of divalent cations. The AUA content of all isolated pectins samples was above 65%, which suggests that the pectin was pure and can be utilized as a food ingredient in domestic foods and food industries. From the FTIR analysis of pectin, it was observed that the bond pattern of Citrus maxima, Citrus jambhiri, and Citrus hystrix was similar. The bond pattern of Citrus limon, Citrus limetta, and Citrus sinensis was similar. However, the bond pattern of Citrus sudachi was different from that of all other citrus fruits. The difference in the bond pattern was due to the hydrophobic nature of pectin purified from Citrus limon, Citrus limetta, Citrus sudachi, and Citrus sinensis and the hydrophilic nature of pectin purified from Citrus maxima, Citrus jambhiri, and Citrus hystrix. Hence, hydrophobic pectin can be utilized in the preparation of hydrogels, nanofibers, food packaging material, polysoaps, drug delivery agents, and microparticulate materials, whereas hydrophilic pectin can be utilized for the preparation of gelling and thickening agents.

2.
Front Plant Sci ; 14: 1220339, 2023.
Article in English | MEDLINE | ID: mdl-37711311

ABSTRACT

Aedes mosquitoes are the major cause of several vector-borne diseases in tropical and subtropical regions. Synthetic pesticides against these mosquitoes have certain limitations; hence, natural, eco-friendly, and safe larvicides obtained from plant resources are used to overcome these. In the present study, the larvicidal efficiency of Commiphora wightii against the fourth instar stage of the dengue fever mosquito Aedes aegypti (Linnaeus, 1762) was studied. The gum resin of C. wightii was collected using the borehole tapping method, and hexane extracts in different concentrations were prepared. The fourth-instar larvae were exposed to the extracts, and percent mortality, as well as LC20, LC50, and LC90, was calculated. Volatile compounds of the hexane gum extract were analyzed by Headspace GC/MS, and the sequence of the acetylcholine, Gamma-aminobutyric acid (GABA) receptor, and octopamine receptor subunit of A. aegypti was obtained. It was found that the hexane gum extract was toxic and lethal for larvae at different concentrations. Minimum mortality was observed at 164 µg mL-1 (10%/h), while maximum mortality was at 276 µg mL-1 (50%/h). The lethal concentrations LC20, LC50, and LC90 were 197.38 µg mL-1, 294.13 µg mL-1, and 540.15 µg mL-1, respectively. The GC/MS analysis confirmed the presence of diterpenes, monoterpenes, monoterpene alcohol, and sesquiterpenes in the gum samples, which are lethal for larvae due to their inhibitory activity on the acetylcholinesterase enzyme, GABA receptor, and octopamine receptor subunit. The use of commonly occurring plant gum for the control of mosquitoes was explored, and it was found that the gum of C. wightii had larvicidal activities and could be potentially insecticidal.

3.
Front Plant Sci ; 14: 1168155, 2023.
Article in English | MEDLINE | ID: mdl-37056512

ABSTRACT

Plants are affected by salt stress in a variety of ways, including water deficiency, ion toxicity, nutrient imbalance, and oxidative stress, all of which can cause cellular damage or plant death. Halotolerant plant growth-promoting rhizobacteria (PGPR) could be a viable alternative for tomato plants growing in arid and semi-arid environments. The aim of this research was to isolate halotolerant plant growth promoting Bacillus sp. to promote tomato (Lycopersicon esculentum Mill.) growth and salt stress resistance. 107 PGPR strains were isolated from the rhizospheres of 'Kesudo' (Butea monosperma Lam.), 'Kawaria' (Cassia tora L.), and 'Arjun' (Terminalia arjuna Roxb.) plants to test their plant growth promoting abilities, including indole-3-acetic acid, phosphate solubilization, siderophore production, and ACC deaminase activity. Five bacterial strains (Bacillus pumilus (NCT4), Bacillus firmus (NCT1), Bacillus licheniformis (LCT4), Bacillus cereus (LAT3), and Bacillus safensis (LBM4)) were chosen for 16S rRNA on the basis of PGPR traits. Compared to PGPR untreated plants, tomato plants developed from PGPR-treated seeds had considerably increased germination percentage, seedling growth, plant height, dry weight, and leaf area. As comparison to PGPR non-inoculated plants, salt-stressed tomato plants treated with PGPR strains had higher levels of total soluble sugar, proline, and chlorophyll as well as higher levels of SOD, CAT, APX, and GR activity. PGPR-inoculated salt-stressed tomato plants had lower MDA, sodium, and chloride levels than non-inoculated plants. In addition, magnesium, calcium, potassium, phosphorus, and iron levels were higher in PGPR treated plants when subjected to salt stress. These results indicate that halotolerant PGPR strains can increase tomato productivity and tolerance to salt stress by removing salt stress's negative effects on plant growth.

4.
Peptides ; 155: 170836, 2022 09.
Article in English | MEDLINE | ID: mdl-35803360

ABSTRACT

Surfactins are cyclic lipopeptides that are isolated from various Bacillus strains. They are made up of heptapeptides and ß-hydroxy fatty acids of variable chain lengths of carbon atoms. Therapeutically they are known to inhibit invasion, migration, and colony formation of human breast carcinoma cells. The role of surfactins is also known as anti-proliferative agents against human cancer cells through induction of apoptosis, arrest of the cell cycle, or suppression of survival signaling. The cytotoxic activity of surfactins is also perceived against human chronic myelogenous leukemia cells, human colon cancer cells, and hepatic carcinoma cells. Considering the wide spectrum of targets, the molecular effects of surfactins are diverse in different cancer cells and they can serve as promising chemotherapeutic agents for the treatment of cancer. Surfactins are being delivered to the targeted cancer cells through nano-carriers or nano-formulations. The present review article provides insight on different types and variations of surfactins, their molecular effect on different cancer cells, and their therapeutic use in the treatment of human cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bacillus subtilis/chemistry , Bacillus subtilis/metabolism , Humans , Lipopeptides/chemistry , Lipopeptides/pharmacology , Lipopeptides/therapeutic use , Neoplasms/drug therapy , Peptides, Cyclic/pharmacology
5.
Saudi J Biol Sci ; 24(7): 1538-1546, 2017 Nov.
Article in English | MEDLINE | ID: mdl-30294223

ABSTRACT

The plant cell responds to abiotic stress conditions by adjusting its cellular metabolism and various defensive mechanisms. Cellular metabolism involves changes in the cell cycle, in which the cell undergoes repeated rounds of endocycles leading to polyploidization. Defense mechanisms such as role of antioxidants are a key to understand plant adaptation. The present work describes endoreduplication and radical scavenging activity as two different defense mechanisms adapted by plants for their survival under stress condition. The work describes linkage of these two processes with each other under abiotic stress. Endoreduplicated root tip cells of Allium cepa were depolyploidized by exogenous phytohormones. Further, free radical scavenging activity from normal, endoreduplicated and depolyploidized root tips cells was observed to understand the role of phytohormones. Elevated free radical scavenging potential was observed in endoreduplicated cells compared to normal and depolyploidized cells. Based on these results, it was concluded that endoreduplication and antioxidant pathways are linked with each other through phytohormonal activities. The concentration of auxin and cytokinin regulates the activity of ascorbate oxidase enzyme, which in turn maintains the concentration of AsA within the cell. AsA level directs the prolyl-hydroxylation process of cell division proteins in quiescent center cells either toward endoreduplication process or cell division process.

6.
Biomed Res Int ; 2014: 453707, 2014.
Article in English | MEDLINE | ID: mdl-24955358

ABSTRACT

Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed.


Subject(s)
Cell Division/genetics , Cytokinins/biosynthesis , Endoreduplication/genetics , Onions/genetics , Cell Division/drug effects , Endoreduplication/drug effects , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/metabolism , Meristem/drug effects , Meristem/genetics , Meristem/growth & development , Onions/drug effects , Plant Growth Regulators/pharmacology , Plant Roots/cytology , Plant Roots/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...