Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Environ Sci Technol ; 52(5): 3091-3100, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29400055

ABSTRACT

Permanent fish cell lines constitute a promising complement or substitute for fish in the environmental risk assessment of chemicals. We demonstrate the potential of a set of cell lines originating from rainbow trout ( Oncorhynchus mykiss) to aid in the prediction of chemical bioaccumulation in fish, using benzo[ a]pyrene (BaP) as a model chemical. We selected three cell lines from different tissues to more fully account for whole-body biotransformation in vivo: the RTL-W1 cell line, representing the liver as major site of biotransformation, and the RTgill-W1 (gill) and RTgutGC (intestine) cell lines, as important environment-organism interfaces, which likely influence chemical uptake. All three cell lines were found to effectively biotransform BaP. However, rates of in vitro clearance differed, with the RTL-W1 cell line being most efficient, followed by RTgutGC. Co-exposures with α-naphthoflavone as potent inhibitor of biotransformation, assessment of CYP1A catalytic activity, and the progression of cellular toxicity upon prolonged BaP exposure revealed that BaP is handled differently in the RTgill-W1 compared to the other two cell lines. Application of the cell-line-derived in vitro clearance rates into a physiology-based toxicokinetic model predicted a BaP bioconcentration factor (BCF) of 909-1057 compared to 920 reported for rainbow trout in vivo.


Subject(s)
Oncorhynchus mykiss , Animals , Benzo(a)pyrene , Biotransformation , Cell Line , Gills
3.
PLoS One ; 9(3): e92303, 2014.
Article in English | MEDLINE | ID: mdl-24647349

ABSTRACT

Effect concentrations in the toxicity assessment of chemicals with fish and fish cells are generally based on external exposure concentrations. External concentrations as dose metrics, may, however, hamper interpretation and extrapolation of toxicological effects because it is the internal concentration that gives rise to the biological effective dose. Thus, we need to understand the relationship between the external and internal concentrations of chemicals. The objectives of this study were to: (i) elucidate the time-course of the concentration of chemicals with a wide range of physicochemical properties in the compartments of an in vitro test system, (ii) derive a predictive model for toxicokinetics in the in vitro test system, (iii) test the hypothesis that internal effect concentrations in fish (in vivo) and fish cell lines (in vitro) correlate, and (iv) develop a quantitative in vitro to in vivo toxicity extrapolation method for fish acute toxicity. To achieve these goals, time-dependent amounts of organic chemicals were measured in medium, cells (RTgill-W1) and the plastic of exposure wells. Then, the relation between uptake, elimination rate constants, and log KOW was investigated for cells in order to develop a toxicokinetic model. This model was used to predict internal effect concentrations in cells, which were compared with internal effect concentrations in fish gills predicted by a Physiologically Based Toxicokinetic model. Our model could predict concentrations of non-volatile organic chemicals with log KOW between 0.5 and 7 in cells. The correlation of the log ratio of internal effect concentrations in fish gills and the fish gill cell line with the log KOW was significant (r>0.85, p = 0.0008, F-test). This ratio can be predicted from the log KOW of the chemical (77% of variance explained), comprising a promising model to predict lethal effects on fish based on in vitro data.


Subject(s)
Organic Chemicals/toxicity , Animals , Fishes , Models, Theoretical , Water Pollutants, Chemical/toxicity
4.
Regul Toxicol Pharmacol ; 67(3): 506-30, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24161465

ABSTRACT

Tests with vertebrates are an integral part of environmental hazard identification and risk assessment of chemicals, plant protection products, pharmaceuticals, biocides, feed additives and effluents. These tests raise ethical and economic concerns and are considered as inappropriate for assessing all of the substances and effluents that require regulatory testing. Hence, there is a strong demand for replacement, reduction and refinement strategies and methods. However, until now alternative approaches have only rarely been used in regulatory settings. This review provides an overview on current regulations of chemicals and the requirements for animal tests in environmental hazard and risk assessment. It aims to highlight the potential areas for alternative approaches in environmental hazard identification and risk assessment. Perspectives and limitations of alternative approaches to animal tests using vertebrates in environmental toxicology, i.e. mainly fish and amphibians, are discussed. Free access to existing (proprietary) animal test data, availability of validated alternative methods and a practical implementation of conceptual approaches such as the Adverse Outcome Pathways and Integrated Testing Strategies were identified as major requirements towards the successful development and implementation of alternative approaches. Although this article focusses on European regulations, its considerations and conclusions are of global relevance.


Subject(s)
Animal Testing Alternatives , Environmental Pollutants/toxicity , Hazardous Substances/toxicity , Animal Testing Alternatives/legislation & jurisprudence , Animal Testing Alternatives/methods , Animal Testing Alternatives/trends , Animals , Environmental Pollutants/chemistry , European Union , Government Regulation , Guidelines as Topic , Hazardous Substances/chemistry , Research Design , Risk Assessment
5.
Curr Protoc Toxicol ; Chapter 1: Unit1.5, 2013 May.
Article in English | MEDLINE | ID: mdl-23670863

ABSTRACT

Protocols for evaluating chemical toxicity at the cellular level using fish cell lines are described in this unit. Routine methodologies for growing salmonid cell lines, and using them in aquatic toxicology studies that support the mandate of the Organization for Economic Co-operation and Development (OECD) to reduce the use of whole animals in toxicity testing, are presented. Rapid, simple, cost-effective tests evaluating viability of cells with three indicator dyes per sample provides a broad overview of the sensitivity of cells to chemical contaminants. This fluorometric assay involves: (1) alamar blue for metabolic activity, (2) CFDA-AM for membrane integrity, and (3) neutral red for lysosomal function. These protocols are conveniently performed in semi-unison within the same multiwell plates and read at three different wavelengths. Detailed step-by-step descriptions of the assays, parameters to consider, troubleshooting, and guidelines for data interpretation are provided as essential tools for investigating environmental aquatic contaminants at the cellular level.


Subject(s)
Food Contamination/analysis , Salmonidae , Seafood/analysis , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Animal Use Alternatives , Animals , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Research Design
6.
Environ Sci Technol ; 47(2): 1110-9, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23227966

ABSTRACT

The OECD test guideline 203 for determination of fish acute toxicity requires substantial numbers of fish and uses death as an apical end point. One potential alternative are fish cell lines; however, several studies indicated that these appear up to several orders of magnitude less sensitive than fish. We developed a fish gill cell line-based (RTgill-W1) assay, using several measures to improve sensitivity. The optimized assay was applied to determine the toxicity of 35 organic chemicals, having a wide range of toxicity to fish, mode of action and physicochemical properties. We found a very good agreement between in vivo and in vitro effective concentrations. For up to 73% of the tested compounds, the difference between the two approaches was less than 5-fold, covering baseline toxicants but as well compounds with presumed specific modes of action, including reactivity, inhibition of acetylcholine esterase or uncoupling of oxidative phosphorylation. Accounting for measured chemical concentrations eliminated two outliers, the hydrophobic 4-decylaniline and the volatile 2,3-dimethyl-1,3-butadiene, with an outlier being operationally defined as a substance showing a more than 10-fold difference between in vivo/in vitro effect concentrations. Few outliers remained. The most striking were allyl alcohol (2700-fold), which likely needs to be metabolically activated, and permethrin (190-fold) and lindane (63-fold), compounds acting, respectively, on sodium and chloride channels in the brain of fish. We discuss further developments of this assay and suggest its use beyond predicting acute toxicity to fish, for example, as part of adverse outcome pathways to replace, reduce, or refine chronic fish tests.


Subject(s)
Biological Assay/methods , Fishes , Gills/cytology , Gills/drug effects , Organic Chemicals/toxicity , Toxicity Tests, Acute/methods , Water Pollutants, Chemical/toxicity , Animals , Cell Line , Cell Survival/drug effects , Fishes/anatomy & histology , Models, Biological
7.
Environ Sci Technol ; 46(17): 9690-700, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22835061

ABSTRACT

The zebrafish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, which is required by various regulations for environmental risk assessment of chemicals. We investigated the reliability of the embryo test by probing organic industrial chemicals with a wide range of physicochemical properties, toxicities, and modes of toxic action. Moreover, the relevance of using measured versus nominal (intended) exposure concentrations, inclusion of sublethal endpoints, and different exposure durations for the comparability with reported fish acute toxicity was explored. Our results confirm a very strong correlation of zebrafish embryo to fish acute toxicity. When toxicity values were calculated based on measured exposure concentrations, the slope of the type II regression line was 1 and nearly passed through the origin (1 to 1 correlation). Measured concentrations also explained several apparent outliers. Neither prolonged exposure (up to 120 h) nor consideration of sublethal effects led to a reduced number of outliers. Yet, two types of compounds were less lethal to embryos than to adult fish: a neurotoxic compound acting via sodium channels (permethrin) and a compound requiring metabolic activation (allyl alcohol).


Subject(s)
Embryo, Nonmammalian/drug effects , Organic Chemicals/toxicity , Zebrafish/embryology , Animals , Embryo, Nonmammalian/physiology , Lethal Dose 50 , Models, Biological , Toxicity Tests, Acute
8.
Environ Sci Technol ; 44(12): 4775-81, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20499932

ABSTRACT

Due to the implementation of new legislation, such as REACh, a dramatic increase of animal use for toxicity testing is expected and the search for alternatives is timely. Cell-based in vitro assays are promising alternatives. However, the behavior of chemicals in these assays is still poorly understood. We set out to quantify the exposure and associated toxicity of chemicals with different physicochemical properties toward a fish gill cell line when different solvents and procedural steps are used to introduce test chemicals to cells. Three chemicals with a range of hydrophobicity and volatility were selected and delivered in three different solvents using two common dosing procedures. Toxicity tests were coupled with chemical analysis to quantify the chemical concentrations within culture wells. The impact of solvents and dosing procedure was greatest for the most volatile and hydrophobic test chemical. We show that certain combinations of the test chemical, solvent, and procedural steps can lead to inhomogeneous distribution of the test chemical and thus differing degrees of bioavailability, resulting in quantitative differences in apparent toxicity.


Subject(s)
Aniline Compounds/toxicity , Biological Assay/methods , Chlorobenzenes/toxicity , Gills/cytology , Sodium Dodecyl Sulfate/toxicity , Solvents/chemistry , Toxicity Tests/methods , Animals , Cell Line , Cell Survival/drug effects , Culture Media/chemistry , Environmental Exposure/analysis , Gills/drug effects , Oncorhynchus mykiss
9.
Aquat Toxicol ; 90(2): 128-37, 2008 Nov 11.
Article in English | MEDLINE | ID: mdl-18829120

ABSTRACT

This paper details the derivation of a list of 60 reference chemicals for the development of alternatives to animal testing in ecotoxicology with a particular focus on fish. The chemicals were selected as a prerequisite to gather mechanistic information on the performance of alternative testing systems, namely vertebrate cell lines and fish embryos, in comparison to the fish acute lethality test. To avoid the need for additional experiments with fish, the U.S. EPA fathead minnow database was consulted as reference for whole organism responses. This database was compared to the Halle Registry of Cytotoxicity and a collation of data by the German EPA (UBA) on acute toxicity data derived from zebrafish embryos. Chemicals that were present in the fathead minnow database and in at least one of the other two databases were subject to selection. Criteria included the coverage of a wide range of toxicity and physico-chemical parameters as well as the determination of outliers of the in vivo/in vitro correlations. While the reference list of chemicals now guides our research for improving cell line and fish embryo assays to make them widely applicable, the list could be of benefit to search for alternatives in ecotoxicology in general. One example would be the use of this list to validate structure-activity prediction models, which in turn would benefit from a continuous extension of this list with regard to physico-chemical and toxicological data.


Subject(s)
Animal Testing Alternatives , Databases, Factual , Ecotoxicology/methods , Organic Chemicals , Animals , Cell Line , Inhibitory Concentration 50 , Lethal Dose 50 , Reference Values , United States , United States Environmental Protection Agency
10.
J Biol Chem ; 282(32): 23687-97, 2007 Aug 10.
Article in English | MEDLINE | ID: mdl-17522059

ABSTRACT

Classically, 6-phosphofructokinases are homo- and hetero-oligomeric enzymes consisting of alpha subunits and alpha/beta subunits, respectively. Herein, we describe a new form of 6-phosphofructokinase (Pfk) present in several Pichia species, which is composed of three different types of subunit, alpha, beta, and gamma. The sequence of the gamma subunit shows no similarity to classic Pfk subunits or to other known protein sequences. In-depth structural and functional studies revealed that the gamma subunit is a constitutive component of Pfk from Pichia pastoris (PpPfk). Analyses of the purified PpPfk suggest a heterododecameric assembly from the three different subunits. Accordingly, it is the largest and most complex Pfk identified yet. Although, the gamma subunit is not required for enzymatic activity, the gamma subunit-deficient mutant displays a decreased growth on nutrient limitation and reduced cell flocculation when compared with the P. pastoris wild-type strain. Subsequent characterization of purified Pfks from wild-type and gamma subunit-deficient strains revealed that the allosteric regulation of the PpPfk by ATP, fructose 2,6-bisphosphate, and AMP is fine-tuned by the gamma subunit. Therefore, we suggest that the gamma subunit contributes to adaptation of P. pastoris to energy resources.


Subject(s)
Phosphofructokinase-1/chemistry , Phosphofructokinase-1/physiology , Pichia/enzymology , Adenosine Triphosphate/chemistry , Amino Acid Sequence , Cell-Free System , Cloning, Molecular , Flow Cytometry , Fructosediphosphates/chemistry , Models, Biological , Molecular Sequence Data , Mutation , Phenotype , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...