Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Nutrients ; 16(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892705

ABSTRACT

Background: Dietary quality and the consumption of antioxidant-rich foods have been shown to protect against memory decline. Therefore, this double-blind, randomized, placebo-controlled study aimed to investigate the effects of a nutritional supplement on changes in cognitive performance. Methods: In adults aged 40 to 70 years with subjective memory complaints, participants were randomly allocated to take a supplement containing vitamin E, astaxanthin, and grape juice extract daily for 12 weeks or a matching placebo. The primary outcomes comprised changes in cognitive tasks assessing episodic memory, working memory, and verbal memory. Secondary and exploratory measures included changes in the speed of information processing, attention, and self-report measures of memory, stress, and eye and skin health. Moreover, changes in plasma concentrations of brain-derived neurotrophic factor, malondialdehyde, tumor-necrosis factor-α, and interleukin-6 were measured, along with changes in skin carotenoid concentrations. Results: Compared to the placebo, nutritional supplementation was associated with larger improvements in one primary outcome measure comprising episodic memory (p = 0.037), but not for working memory (p = 0.418) or verbal learning (p = 0.841). Findings from secondary and exploratory outcomes demonstrated that the nutraceutical intake was associated with larger improvements in the Everyday Memory Questionnaire (p = 0.022), increased plasma brain-derived neurotrophic factor (p = 0.030), decreased plasma malondialdehyde (p = 0.040), and increased skin carotenoid concentrations (p = 0.006). However, there were no group differences in changes in the remaining outcome measures. Conclusions: Twelve weeks of supplementation with a nutritional supplement was associated with improvements in episodic memory and several biological markers associated with cognitive health. Future research will be essential to extend and validate the current findings.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognition , Dietary Supplements , Humans , Middle Aged , Double-Blind Method , Male , Female , Cognition/drug effects , Adult , Aged , Brain-Derived Neurotrophic Factor/blood , Vitamin E , Xanthophylls/administration & dosage , Skin/drug effects , Antioxidants , Interleukin-6/blood , Self Report , Carotenoids/blood , Tumor Necrosis Factor-alpha/blood , Memory, Short-Term/drug effects , Memory, Episodic , Fruit and Vegetable Juices , Malondialdehyde/blood , Eye/drug effects
2.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766022

ABSTRACT

Lachnospiraceae members were highly detected in dysbiotic IL-10 KO mice that displayed similar physiological outcomes as control mice. Lachnospiraceae is a highly diverse family of microbes that have been shown to display both commensal and pathogenic characteristics in the colon environment. We investigated the impact of genetic variation in five Lachnospiraceae strains on lowering cellular inflammation and ROS levels. Cell free spent media (CFSM) from Eubacterium rectale resulted in lowered ROS, and nitric oxide levels in stressed colon cells. We demonstrated through an array of multi-omics and molecular techniques that glutathione (GSH) biosynthesized by E. rectale was able to alleviate host ROS damage. We further showed downregulation of cell stress and immune response genes by host RNA sequencing, which is evidence that E. rectale microbial products promote recovery and alleviate ROS stress.

3.
Nat Commun ; 15(1): 3863, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769315

ABSTRACT

Mars is a particularly attractive candidate among known astronomical objects to potentially host life. Results from space exploration missions have provided insights into Martian geochemistry that indicate oxychlorine species, particularly perchlorate, are ubiquitous features of the Martian geochemical landscape. Perchlorate presents potential obstacles for known forms of life due to its toxicity. However, it can also provide potential benefits, such as producing brines by deliquescence, like those thought to exist on present-day Mars. Here we show perchlorate brines support folding and catalysis of functional RNAs, while inactivating representative protein enzymes. Additionally, we show perchlorate and other oxychlorine species enable ribozyme functions, including homeostasis-like regulatory behavior and ribozyme-catalyzed chlorination of organic molecules. We suggest nucleic acids are uniquely well-suited to hypersaline Martian environments. Furthermore, Martian near- or subsurface oxychlorine brines, and brines found in potential lifeforms, could provide a unique niche for biomolecular evolution.


Subject(s)
Evolution, Molecular , Extraterrestrial Environment , Mars , Perchlorates , RNA, Catalytic , RNA, Catalytic/metabolism , RNA, Catalytic/genetics , Perchlorates/metabolism
4.
Mol Microbiol ; 121(1): 129-141, 2024 01.
Article in English | MEDLINE | ID: mdl-38082493

ABSTRACT

Brucella abortus is a facultative, intracellular, zoonotic pathogen that resides inside macrophages during infection. This is a specialized niche where B. abortus encounters various stresses as it navigates through the macrophage. In order to survive this harsh environment, B. abortus utilizes post-transcriptional regulation of gene expression through the use of small regulatory RNAs (sRNAs). Here, we characterize a Brucella sRNAs called MavR (for MurF- and virulence-regulating sRNA), and we demonstrate that MavR is required for the full virulence of B. abortus in macrophages and in a mouse model of chronic infection. Transcriptomic and proteomic studies revealed that a major regulatory target of MavR is MurF. MurF is an essential protein that catalyzes the final cytoplasmic step in peptidoglycan (PG) synthesis; however, we did not detect any differences in the amount or chemical composition of PG in the ΔmavR mutant. A 6-nucleotide regulatory seed region within MavR was identified, and mutation of this seed region resulted in dysregulation of MurF production, as well as significant attenuation of infection in a mouse model. Overall, the present study underscores the importance of sRNA regulation in the physiology and virulence of Brucella.


Subject(s)
Brucellosis , RNA, Small Untranslated , Animals , Mice , Brucella abortus/metabolism , Gene Expression Regulation , Macrophages , Mice, Inbred BALB C , Proteomics , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism
5.
mSystems ; 8(6): e0070323, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37909786

ABSTRACT

IMPORTANCE: Inflammatory bowel disease is associated with an increase in Enterobacteriaceae and Enterococcus species; however, the specific mechanisms are unclear. Previous research has reported the associations between microbiota and inflammation, here we investigate potential pathways that specific bacteria populations use to drive gut inflammation. Richie et al. show that these bacterial populations utilize an alternate sulfur metabolism and are tolerant of host-derived immune-response products. These metabolic pathways drive host gut inflammation and fuel over colonization of these pathobionts in the dysbiotic colon. Cultured isolates from dysbiotic mice indicated faster growth supplemented with L-cysteine, showing these microbes can utilize essential host nutrients.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice , Animals , Amino Acids , Colitis/microbiology , Inflammation , Inflammatory Bowel Diseases/drug therapy , Bacteria
6.
Cell ; 186(9): 1846-1862.e26, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37028428

ABSTRACT

The use of probiotics by cancer patients is increasing, including among those undergoing immune checkpoint inhibitor (ICI) treatment. Here, we elucidate a critical microbial-host crosstalk between probiotic-released aryl hydrocarbon receptor (AhR) agonist indole-3-aldehyde (I3A) and CD8 T cells within the tumor microenvironment that potently enhances antitumor immunity and facilitates ICI in preclinical melanoma. Our study reveals that probiotic Lactobacillus reuteri (Lr) translocates to, colonizes, and persists within melanoma, where via its released dietary tryptophan catabolite I3A, it locally promotes interferon-γ-producing CD8 T cells, thereby bolstering ICI. Moreover, Lr-secreted I3A was both necessary and sufficient to drive antitumor immunity, and loss of AhR signaling within CD8 T cells abrogated Lr's antitumor effects. Further, a tryptophan-enriched diet potentiated both Lr- and ICI-induced antitumor immunity, dependent on CD8 T cell AhR signaling. Finally, we provide evidence for a potential role of I3A in promoting ICI efficacy and survival in advanced melanoma patients.


Subject(s)
Limosilactobacillus reuteri , Melanoma , Tumor Microenvironment , Humans , Diet , Immune Checkpoint Inhibitors , Limosilactobacillus reuteri/metabolism , Melanoma/therapy , Tryptophan/metabolism , CD8-Positive T-Lymphocytes/immunology , Receptors, Aryl Hydrocarbon/agonists
7.
Front Bioeng Biotechnol ; 10: 947508, 2022.
Article in English | MEDLINE | ID: mdl-36246369

ABSTRACT

Kinetic modeling has relied on using a tedious number of mathematical equations to describe molecular kinetics in interacting reactions. The long list of differential equations with associated abstract variables and parameters inevitably hinders readers' easy understanding of the models. However, the mathematical equations describing the kinetics of biochemical reactions can be exactly mapped to the dynamics of voltages and currents in simple electronic circuits wherein voltages represent molecular concentrations and currents represent molecular fluxes. For example, we theoretically derive and experimentally verify accurate circuit models for Michaelis-Menten kinetics. Then, we show that such circuit models can be scaled via simple wiring among circuit motifs to represent more and arbitrarily complex reactions. Hence, we can directly map reaction networks to equivalent circuit schematics in a rapid, quantitatively accurate, and intuitive fashion without needing mathematical equations. We verify experimentally that these circuit models are quantitatively accurate. Examples include 1) different mechanisms of competitive, noncompetitive, uncompetitive, and mixed enzyme inhibition, important for understanding pharmacokinetics; 2) product-feedback inhibition, common in biochemistry; 3) reversible reactions; 4) multi-substrate enzymatic reactions, both important in many metabolic pathways; and 5) translation and transcription dynamics in a cell-free system, which brings insight into the functioning of all gene-protein networks. We envision that circuit modeling and simulation could become a powerful scientific communication language and tool for quantitative studies of kinetics in biology and related fields.

8.
Soft Matter ; 18(34): 6404-6410, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35979744

ABSTRACT

The ability to rapidly manufacture building blocks with specific binding interactions is a key aspect of programmable assembly. Recent developments in DNA nanotechnology and colloidal particle synthesis have significantly advanced our ability to create particle sets with programmable interactions, based on DNA or shape complementarity. The increasing miniaturization underlying magnetic storage offers a new path for engineering programmable components for self assembly, by printing magnetic dipole patterns on substrates using nanotechnology. How to efficiently design dipole patterns for programmable assembly remains an open question as the design space is combinatorially large. Here, we present design rules for programming these magnetic interactions. By optimizing the structure of the dipole pattern, we demonstrate that the number of independent building blocks scales super linearly with the number of printed domains. We test these design rules using computational simulations of self assembled blocks, and experimental realizations of the blocks at the mm scale, demonstrating that the designed blocks give high yield assembly. In addition, our design rules indicate that with current printing technology, micron sized magnetic panels could easily achieve hundreds of different building blocks.


Subject(s)
DNA , Nanotechnology , DNA/chemistry , Magnetic Phenomena
9.
Ultrasonics ; 125: 106773, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35688013

ABSTRACT

The use of guided waves to identify damage has become a popular method due to its robustness and fast execution, as well as the advantage of being able to inspect large areas and detect minor structural defects. When a travelling wave on a plate interacts with a defect, it generates a scattered field that will depend on the defects geometry. By analysing the scattered field, one can thus characterize the type and size of the plate damage. A Bayesian framework based on a guided waves interaction model for damage identification of infinite plate for the first time is presented here. A semi-analytical approach based on the lowest order plate theories is adopted to obtain the scattering features for damage geometries with circular symmetry, resulting in an efficient inversion procedure. Subsequently, ultrasound experiments are performed on a large aluminium plate with a circular indentation to generate wave reflection and transmission coefficients. With the aid of signal processing techniques, the effectiveness and efficiency of the proposed approach are verified. A full finite element model is used to test the damage identification scheme. Finally, the scattering coefficients are reconstructed, reliably matching the experimental results. The framework supports digital twin technology of structural health monitoring.


Subject(s)
Models, Theoretical , Bayes Theorem , Ultrasonography
10.
Biochem Biophys Rep ; 30: 101238, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35243016

ABSTRACT

Ions in the Hofmeister series exhibit varied effects on biopolymers. Those classed as kosmotropes generally stabilize secondary structure, and those classed as chaotropes generally destabilize secondary structure. Here, we report that several anionic chaotropes exhibit unique effects on one DNA secondary structure - a G quadruplex. These chaotropes exhibit the expected behaviour (destabilization of secondary structure) in two other structural contexts: a DNA duplex and i-Motifs. Uniquely among secondary structures, we observe that G quadruplexes are comparatively insensitive to the presence of anionic chaotropes, but not other denaturants. Further, the presence of equimolar NaCl provided greater mitigation of the destabilization caused by other non-anionic denaturants. These results are consistent with the presence of monovalent cations providing an especially pronounced stabilizing effect to G quadruplexes when studied in denaturing solution conditions.

11.
Chembiochem ; 23(9): e202200090, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35245408

ABSTRACT

Here we demonstrate a switchable DNA electron-transfer catalyst, enabled by selective destabilization of secondary structure by the denaturant, perchlorate. The system is comprised of two strands, one of which can be selectively switched between a G-quadruplex and duplex or single-stranded conformations. In the G-quadruplex state, it binds hemin, enabling peroxidase activity. This switching ability arises from our finding that perchlorate, a chaotropic Hofmeister ion, selectively destabilizes duplex over G-quadruplex DNA. By varying perchlorate concentration, we show that the DNA structure can be switched between states that do and do not catalyze electron-transfer catalysis. State switching can be achieved in three ways: thermally, by dilution, or by concentration.


Subject(s)
G-Quadruplexes , Peroxidases , DNA , Hemin , Perchlorates
12.
Nat Microbiol ; 6(12): 1583-1592, 2021 12.
Article in English | MEDLINE | ID: mdl-34819646

ABSTRACT

Peptidoglycan-a mesh sac of glycans that are linked by peptides-is the main component of bacterial cell walls. Peptidoglycan provides structural strength, protects cells from osmotic pressure and contributes to shape. All bacterial glycans are repeating disaccharides of N-acetylglucosamine (GlcNAc) ß-(1-4)-linked to N-acetylmuramic acid (MurNAc). Borrelia burgdorferi, the tick-borne Lyme disease pathogen, produces glycan chains in which MurNAc is occasionally replaced with an unknown sugar. Nuclear magnetic resonance, liquid chromatography-mass spectroscopy and genetic analyses show that B. burgdorferi produces glycans that contain GlcNAc-GlcNAc. This unusual disaccharide is chitobiose, a component of its chitinous tick vector. Mutant bacteria that are auxotrophic for chitobiose have altered morphology, reduced motility and cell envelope defects that probably result from producing peptidoglycan that is stiffer than that in wild-type bacteria. We propose that the peptidoglycan of B. burgdorferi probably evolved by adaptation to obligate parasitization of a tick vector, resulting in a biophysical cell-wall alteration to withstand the atypical torque associated with twisting motility.


Subject(s)
Borrelia burgdorferi/metabolism , Cell Wall/metabolism , Sugars/metabolism , Ticks/microbiology , Animals , Borrelia burgdorferi/genetics , Cell Wall/chemistry , Cell Wall/genetics , Host-Pathogen Interactions , Muramic Acids/metabolism , Peptidoglycan/metabolism , Sugars/chemistry , Ticks/metabolism
13.
Methods Mol Biol ; 2319: 93-104, 2021.
Article in English | MEDLINE | ID: mdl-34331247

ABSTRACT

Lightsheet microscopy is a form of fluorescence microscopy that can be used to visualize specimen with high resolution, a large depth-of-field, and minimal photodamage and photobleaching as compared to traditional confocal microscopy. As this technology becomes much more readily available, it will be useful in revealing new findings in the cardiovascular development field that may be hidden or difficult to image. In this manuscript, we describe an approach for mounting and culturing postimplantation mouse embryos to visualize blood vessel development with a lightsheet microscope.


Subject(s)
Angiography/methods , Blood Vessels/diagnostic imaging , Culture Techniques/methods , Embryo, Mammalian/diagnostic imaging , Embryonic Development , Microscopy, Fluorescence/methods , Neovascularization, Physiologic , Animals , Blood Vessels/growth & development , Blood Vessels/metabolism , Culture Media/chemistry , Dissection/methods , Embryo, Mammalian/blood supply , Mice , Mice, Transgenic , Microscopy, Confocal
14.
PLoS Pathog ; 17(5): e1009546, 2021 05.
Article in English | MEDLINE | ID: mdl-33984073

ABSTRACT

The bacterial pathogen responsible for causing Lyme disease, Borrelia burgdorferi, is an atypical Gram-negative spirochete that is transmitted to humans via the bite of an infected Ixodes tick. In diderms, peptidoglycan (PG) is sandwiched between the inner and outer membrane of the cell envelope. In many other Gram-negative bacteria, PG is bound by protein(s), which provide both structural integrity and continuity between envelope layers. Here, we present evidence of a peptidoglycan-associated protein (PAP) in B. burgdorferi. Using an unbiased proteomics approach, we identified Neutrophil Attracting Protein A (NapA) as a PAP. Interestingly, NapA is a Dps homologue, which typically functions to bind and protect cellular DNA from damage during times of stress. While B. burgdorferi NapA is known to be involved in the oxidative stress response, it lacks the critical residues necessary for DNA binding. Biochemical and cellular studies demonstrate that NapA is localized to the B. burgdorferi periplasm and is indeed a PAP. Cryo-electron microscopy indicates that mutant bacteria, unable to produce NapA, have structural abnormalities. Defects in cell-wall integrity impact growth rate and cause the napA mutant to be more susceptible to osmotic and PG-specific stresses. NapA-linked PG is secreted in outer membrane vesicles and augments IL-17 production, relative to PG alone. Using microfluidics, we demonstrate that NapA acts as a molecular beacon-exacerbating the pathogenic properties of B. burgdorferi PG. These studies further our understanding of the B. burgdorferi cell envelope, provide critical information that underlies its pathogenesis, and highlight how a highly conserved bacterial protein can evolve mechanistically, while maintaining biological function.


Subject(s)
Bacterial Proteins/metabolism , Borrelia burgdorferi/physiology , Cell Wall/chemistry , Chemokines, CXC/metabolism , Lyme Disease/pathology , Peptidoglycan/metabolism , Bacterial Proteins/genetics , Cell Wall/microbiology , Chemokines, CXC/genetics , Humans , Lyme Disease/metabolism , Lyme Disease/microbiology
15.
Psychopharmacology (Berl) ; 238(1): 133-148, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32936321

ABSTRACT

RATIONALE: Risky choice can be measured using the risky decision task (RDT). In the RDT, animals choose between a large, risky option that is paired with probabilistic foot shock and a small, safe option that is never paired with shock. To date, studies examining the neurochemical basis of decision-making in the RDT have focused primarily on the dopaminergic system but have not focused on the glutamatergic system, which has been implicated in risky decision-making. OBJECTIVES: Because glutamate is known to play a critical role in decision-making, we wanted to determine the contribution of the glutamatergic system to performance in the RDT. METHODS: In the experiment, 32 rats (16 male; 16 female) were tested in the RDT. The probability of receiving a foot shock increased across the session (ascending schedule) for half of the rats but decreased across the session (descending schedule) for half of the rats. Following training, rats received injections of the N-methyl-D-aspartate (NMDA) receptor competitive antagonist CGS 19755 (0, 1.0, 2.5, 5.0 mg/kg; s.c.) and the GluN2B-selective antagonist Ro 63-1908 (0, 0.1, 0.3, 1.0 mg/kg; s.c.). RESULTS: CGS 19755 (2.5 and 5.0 mg/kg) increased risky choice in males and females trained on the ascending schedule. Ro 63-1908 (1.0 mg/kg) decreased risky choice, but only in male rats trained on the ascending schedule. CONCLUSIONS: Although NMDA receptor antagonists differentially alter risky choice in the RDT, the current results show that NMDA receptors are an important mediator of decision-making involving probabilistic delivery of positive punishment.


Subject(s)
Decision Making/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Risk , Animals , Dopamine/metabolism , Female , Glutamates/metabolism , Male , Phenols/pharmacology , Piperidines/pharmacology , Probability , Punishment/psychology , Rats , Rats, Long-Evans
16.
IEEE Nanotechnol Mag ; 15(6): 41-53, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35242267

ABSTRACT

Boltzmann-exponential thermodynamic laws govern noisy molecular flux in chemical reactions as well as noisy subthreshold electron current flux in transistors. These common mathematical laws enable one to map and simulate arbitrary stochastic biochemical reaction networks in highly efficient cytomorphic systems built on subthreshold analog circuits. Such simulations can accurately model noisy, nonlinear, asynchronous, stiff, and non-modular feedback dynamics in interconnected networks in the physical circuits, automatically. The scaling in simulation time for stochastic networks with the number of reactions or molecules is constant in cytomorphic systems. In contrast, it grows rapidly in digital systems, which are not parallelizable. Therefore, cytomorphic systems enable large-scale supercomputing systems-biology simulations of arbitrary and highly computationally intensive biochemical reaction networks that can nevertheless be compiled to them via digitally programmable parameters and connectivity. We outline how cytomorphic systems can be utilized for rapid drug-cocktail formulation and discovery in future pandemics like COVID-19; can simulate networks important in cancer; and can help automate the design of synthetic biological circuits, e.g. a synthetic biological operational amplifier for robust and precise drug delivery. Thus, just as neuromorphic systems have enabled multiple applications in A.I., cytomorphic systems will enable multiple applications in biology and medicine.

17.
Biochem Mol Biol Educ ; 48(5): 448-451, 2020 09.
Article in English | MEDLINE | ID: mdl-32604463

ABSTRACT

Structural biology education commonly employs molecular visualization software, such as PyMol, RasMol, and VMD, to allow students to appreciate structure-function relationships in biomolecules. In on-ground, classroom-based education, these programs are commonly used on University-owned devices with software preinstalled. Remote education typically involves the use of student-owned devices, which complicates the use of such software, owing to the fact that (a) student devices have differing configurations (e.g., Windows vs MacOS) and processing power, and (b) not all student devices are suitable for use with such software. Smartphones are near-ubiquitous devices, with smartphone ownership exceeding personal computer ownership, according to a recent survey. Here, we show the use of a smartphone-based augmented reality app, Augment, in a structural biology classroom exercise, which students installed independently without IT support. Post-lab attitudinal survey results indicate positive student experiences with this app. Based on our experiences, we suggest that smartphone-based molecular visualization software, such as that used in this exercise, is a powerful educational tool that is particularly well-suited for use in remote education.


Subject(s)
Augmented Reality , Education, Distance , Molecular Biology/education , Smartphone , Software , Humans
18.
Behav Brain Res ; 390: 112669, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32417278

ABSTRACT

Probability discounting is often measured with independent schedules. Independent schedules have several limitations, such as confounding preference for one alternative with frequency of reward presentation and generating ceiling/floor effects at certain probabilities. To address this potential caveat, a controlled reinforcer frequency schedule can be used, in which the manipulandum that leads to reinforcement is pseudo-randomly determined before each trial. This schedule ensures subjects receive equal presentations of the small and large magnitude reinforcers across each block of trials. A total of 24 pair-housed and 11 individually housed female Sprague Dawley rats were tested in a controlled reinforcer frequency procedure. For half of the rats, the odds against (OA) receiving the large magnitude reinforcer increased across the session (ascending schedule); the OA decreased across the session for half of the rats (descending schedule). Following training, rats received treatments of amphetamine (AMPH; 0, 0.25, 0.5, 1.0 mg/kg; s.c.). For pair-housed rats, AMPH (0.5 mg/kg) increased risky choice, regardless of probability presentation order, whereas a higher dose of AMPH (1.0 mg/kg) decreased discriminability of reinforcer magnitude for rats trained on the descending schedule only. For individually housed rats, probability presentation order modulated the effects of AMPH on probability discounting, as AMPH (0.25 and 0.5 mg/kg) increased risky choice in rats trained on the ascending schedule but not on the descending schedule. These results show that pair-housing animals, but not using a controlled reinforcer frequency procedure, attenuates the modulatory effects of probability presentation order on drug effects on risky choice.


Subject(s)
Amphetamine/pharmacology , Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Choice Behavior/drug effects , Housing, Animal , Reinforcement Schedule , Risk-Taking , Amphetamine/administration & dosage , Animals , Central Nervous System Stimulants/administration & dosage , Female , Probability Learning , Rats , Rats, Sprague-Dawley
19.
Adv Mater ; 31(29): e1901944, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31148291

ABSTRACT

Bending and folding techniques such as origami and kirigami enable the scale-invariant design of 3D structures, metamaterials, and robots from 2D starting materials. These design principles are especially valuable for small systems because most micro- and nanofabrication involves lithographic patterning of planar materials. Ultrathin films of inorganic materials serve as an ideal substrate for the fabrication of flexible microsystems because they possess high intrinsic strength, are not susceptible to plasticity, and are easily integrated into microfabrication processes. Here, atomic layer deposition (ALD) is employed to synthesize films down to 2 nm thickness to create membranes, metamaterials, and machines with micrometer-scale dimensions. Two materials are studied as model systems: ultrathin SiO2 and Pt. In this thickness limit, ALD films of these materials behave elastically and can be fabricated with fJ-scale bending stiffnesses. Further, ALD membranes are utilized to design micrometer-scale mechanical metamaterials and magnetically actuated 3D devices. These results establish thin ALD films as a scalable basis for micrometer-scale actuators and robotics.

20.
Methods Enzymol ; 623: 23-43, 2019.
Article in English | MEDLINE | ID: mdl-31239049

ABSTRACT

Thermal denaturation is a common technique in the biophysical study of nucleic acids. These experiments are typically performed by monitoring the increase in absorbance (hyperchromism) of a sample at 260nm with temperature (Mergny & Lacroix, 2003; Puglisi & Tinoco, 1989). This wavelength is chosen as nucleic acids of mixed sequence typically exhibit their maximum absorbance here. Exceptions exist, however, some noncanonical nucleic acid structures exhibit differing spectral changes with temperature, resulting in other wavelengths being convenient reporters of secondary structure. In the case of nucleic acids that bind visible light-absorbing ligands, such as fluorogenic aptamers, another wavelength can be a convenient reporter of secondary structure stability and RNA-ligand recognition. As it can be difficult, if not impossible, to know which wavelength to employ a priori, we have developed a system for obtaining the full UV-visible spectrum of a sample at each wavelength, allowing for the subsequent extraction of the absorbance-temperature profile at the desired wavelength. Here, we describe the apparatus and software used to do so. We also describe another technique for the use of a qPCR instrument for measuring secondary structure stability of fluorescent nucleic acid-ligand complexes.


Subject(s)
Fluorescent Dyes/chemistry , Nucleic Acids/chemistry , Aptamers, Nucleotide/chemistry , DNA/chemistry , Nucleic Acid Conformation , Nucleic Acid Denaturation , RNA/chemistry , Spectrophotometry, Ultraviolet/methods , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...