Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Front Nutr ; 9: 977206, 2022.
Article in English | MEDLINE | ID: mdl-36034932

ABSTRACT

Wheat is a major source of nutrition, though in susceptible people it can elicit inappropriate immune responses. Wheat allergy and non-celiac wheat sensitivity are caused by various wheat proteins, including alpha-amylase trypsin inhibitors (ATIs). These proteins, like the gluten proteins which can cause celiac disease, are incompletely digested in the stomach such that immunogenic epitopes reach the lower digestive system where they elicit the undesirable immune response. The only completely effective treatment for these immune reactions is to eliminate the food trigger from the diet, though inadvertent or accidental consumption can still cause debilitating symptoms in susceptible people. One approach used is to prevent the causal proteins from provoking an immune reaction by enhancing their digestion using digestive protease supplements that act in the stomach or intestine, cleaving them to prevent or quench the harmful immune response. In this study, a digestive supplement enriched in caricain, an enzyme naturally present in papaya latex originally designed to act against gluten proteins was assessed for its ability to digest wheat ATIs. The digestion efficiency was quantitatively measured using liquid chromatography-mass spectrometry, including examination of the cleavage sites and the peptide products. The peptide products were measured across a digestion time course under conditions that mimic gastric digestion in vivo , involving the use of pepsin uniquely or in combination with the supplement to test for additive effects. The detection of diverse cleavage sites in the caricain supplement-treated samples suggests the presence of several proteolytic enzymes that act synergistically. Caricain showed rapid action in vitro against known immunogenic ATIs, indicating its utility for digestion of wheat ATIs in the upper digestive tract.

2.
Catheter Cardiovasc Interv ; 99(2): 512-517, 2022 02.
Article in English | MEDLINE | ID: mdl-33638270

ABSTRACT

Spontaneous left ventricular pseudoaneurysms are very rare and can have catastrophic consequences if unrecognized. A case of combined spontaneous left ventricular aneurysm and pseudoaneurysm in Behcet's disease (BD) has been reported. The case emphasizes advanced techniques for percutaneous closure of the defects with the use of an ex-vivo three-dimensional cardiac printed model as a tool to facilitate the procedure.


Subject(s)
Aneurysm, False , Behcet Syndrome , Heart Aneurysm , Aneurysm, False/diagnostic imaging , Aneurysm, False/etiology , Aneurysm, False/therapy , Behcet Syndrome/complications , Behcet Syndrome/diagnosis , Heart Aneurysm/diagnostic imaging , Heart Aneurysm/etiology , Heart Aneurysm/therapy , Heart Ventricles/diagnostic imaging , Humans , Treatment Outcome
3.
Front Plant Sci ; 10: 649, 2019.
Article in English | MEDLINE | ID: mdl-31156692

ABSTRACT

The temporal pattern of accumulation of hordein storage proteins in developing barley grains was studied by enzyme-linked immunosorbent assay (ELISA), western blot and liquid chromatography tandem mass spectrometry (LC-MS/MS). Hordein accumulation was compared to the pattern seen for two abundant control proteins, serpin Z4 (an early accumulator) and lipid transferase protein (LTP1, a late accumulator). Hordeins were detected from 6 days post-anthesis (DPA) and peaked at 30 DPA. Changes in fresh weight indicate that desiccation begins at 20 DPA and by 37 DPA fresh weight had decreased by 35%. ELISA analysis of hordein content, expressed on a protein basis, increased to a maximum at 30 DPA followed by a 17% decrease by 37 DPA. The accumulation of 39 tryptic and 29 chymotryptic hordein peptides representing all classes of hordein was studied by LC-MS/MS. Most peptides increased to a maximum at 30 DPA, and either remained at the maximum or did not decrease significantly. Only five tryptic peptides, members of the related B1- and γ1-hordeins decreased significantly by 21-51% at 37 DPA. Thus, the concentration of some specific peptides was reduced while remaining members of the same family were not affected. The N-terminal signal region was removed by proteolysis during co-translation. In addition to a suite of previously characterized hordeins, two novel barley B-hordein isoforms mapping to wheat low molecular weight glutenins (LMW-GS-like B-hordeins), and two avenin-like proteins (ALPs) sharing homology with wheat ALPs, were identified. These identified isoforms have not previously been mapped in the barley genome. Cereal storage proteins provide significant nutritional content for human consumption and seed germination. In barley, the bulk of the storage proteins comprise the hordein family and the final hordein concentration affects the quality of baked and brewed products. It is therefore important to study the accumulation of hordeins as this knowledge may assist plant breeding for improved health outcomes (by minimizing triggering of detrimental immune responses), nutrition and food processing properties.

6.
Anal Chem ; 88(18): 9127-35, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27533879

ABSTRACT

Celiac disease (CD) is a disease of the small intestine that occurs in genetically susceptible subjects triggered by the ingestion of cereal gluten proteins for which the only treatment is strict adherence to a life-long gluten-free diet. Barley contains four gluten protein families, and the existence of barley genotypes that do not accumulate the B-, C-, and D-hordeins paved the way for the development of an ultralow gluten phenotype. Using conventional breeding strategies, three null mutations behaving as recessive alleles were combined to create a hordein triple-null barley variety. Proteomics has become an invaluable tool for characterization and quantification of the protein complement of cereal grains. In this study multiple reaction monitoring (MRM) mass spectrometry, viewed as the gold standard for peptide quantification, was compared to the data-independent acquisition strategy known as SWATH-MS (sequential window acquisition of all theoretical mass spectra). SWATH-MS was comparable (p < 0.001) to MRM-MS for 32/33 peptides assessed across the four families of hordeins (gluten) in eight barley lines. The results of SWATH-MS analysis further confirmed the absence of the B-, C-, and D-hordeins in the triple-null barley line and showed significantly reduced levels ranging from <1% to 16% relative to wild-type (WT) cv Sloop for the minor γ-hordein class. SWATH-MS represents a valuable tool for quantitative proteomics based on its ability to generate reproducible data comparable with MRM-MS, but has the added benefits of allowing reinterrogation of data to improve analytical performance, ask new questions, and in this case perform quantification of trypsin-resistant proteins (C-hordeins) through analysis of their semi- or nontryptic fragments.


Subject(s)
Glutens/analysis , Hordeum/chemistry , Mass Spectrometry/methods , Plant Proteins/analysis , Proteomics/methods , Celiac Disease/diet therapy , Glutens/genetics , Hordeum/genetics , Humans , Mutation , Peptides/analysis , Peptides/genetics , Plant Breeding , Plant Proteins/genetics
7.
Plant Biotechnol J ; 14(4): 1139-50, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26427614

ABSTRACT

Coeliac disease is a well-defined condition that is estimated to affect approximately 1% of the population worldwide. Noncoeliac gluten sensitivity is a condition that is less well defined, but is estimated to affect up to 10% of the population, and is often self-diagnosed. At present, the only remedy for both conditions is a lifelong gluten-free diet. A gluten-free diet is often expensive, high in fat and low in fibre, which in themselves can lead to adverse health outcomes. Thus, there is an opportunity to use novel plant breeding strategies to develop alternative gluten-free grains. In this work, we describe the breeding and characterization of a novel ultra-low gluten (ULG) barley variety in which the hordein (gluten) content was reduced to below 5 ppm. This was achieved using traditional breeding strategies to combine three recessive alleles, which act independently of each other to lower the hordein content in the parental varieties. The grain of the initial variety was shrunken compared to wild-type barleys. We implemented a breeding strategy to improve the grain size to near wild-type levels and demonstrated that the grains can be malted and brewed successfully. The ULG barley has the potential to provide novel healthy foods and beverages for those who require a gluten-free diet.


Subject(s)
Flour/analysis , Glutens/genetics , Hordeum/genetics , Acrylamide/chemistry , Amino Acids/analysis , Amylases/metabolism , Celiac Disease , Diet, Gluten-Free , Enzyme-Linked Immunosorbent Assay , Glutens/analysis , Glutens/metabolism , Hordeum/physiology , Humans , Mass Spectrometry/methods , Plant Breeding/methods , Seeds/physiology
8.
J Proteome Res ; 14(6): 2659-68, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25873154

ABSTRACT

Global proteomic analysis utilizing SDS-PAGE, Western blotting and LC-MS/MS of total protein and gluten-enriched extracts derived from 16 economically important cereals was undertaken, providing a foundation for the development of MS-based quantitative methodologies that would enable the detection of wheat contamination in foods. The number of proteins identified in each grain correlated with the number of entries in publicly available databases, highlighting the importance of continued advances in genome sequencing to facilitate accurate protein identification. Subsequently, candidate wheat-specific peptide markers were evaluated by multiple-reaction monitoring MS. The selected markers were unique to wheat, yet present in a wide range of wheat varieties that represent up to 80% of the bread wheat genome. The final analytical method was rapid (15 min) and robust (CV < 10%), showed linearity (R(2) > 0.98) spanning over 3 orders of magnitude, and was highly selective and sensitive with detection down to 15 mg/kg in intentionally contaminated soy flour. Furthermore, application of this technology revealed wheat contamination in commercially sourced flours, including rye, millet, oats, sorghum, buckwheat and three varieties of soy.


Subject(s)
Edible Grain/metabolism , Food Contamination , Plant Proteins/isolation & purification , Proteome , Triticum , Amino Acid Sequence , Chromatography, Liquid , Edible Grain/classification , Electrophoresis, Polyacrylamide Gel , Mass Spectrometry , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Homology, Amino Acid
9.
J Chromatogr A ; 1370: 105-14, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25454134

ABSTRACT

Gluten is the collective name for a class of proteins found in wheat, rye, barley and oats. Eating gluten triggers an inappropriate auto-immune reaction in ∼70 million people globally affected by coeliac disease, where the gut reacts to gluten proteins and this triggers an immune response, resulting in intestinal inflammation and damage. Gluten-free foods are now commonplace, however, it is difficult to accurately determine the gluten content of products claiming to be gluten-free using current methodologies as the antibodies are non-specific, show cross-reactivity and have different affinities for the different classes of gluten. The measurement of gluten in processed products is further confounded by modifications to the proteins that occur during processing and in some case hydrolysis of the proteins. In this study, LC-MS/MS was used to profile whole beer, and two beer fractions representing hydrolysed hordeins (<30 kDa) and hordein peptide fragments (<10 kDa). Subsequently, multiple reaction monitoring (MRM) MS enabled the relative quantification of selected peptide fragments in beer and revealed that certain classes of hordein were prone to hydrolysis (B- and D-hordein). Furthermore, select beers contained very high levels of gluten-derived fragments. Strikingly, those beers that contained high levels of B-hordein fragments gave near zero values by ELISA. The hydrolysed fragments that persist in beer show a dose-dependent suppression of ELISA measurement of gluten despite using a hordein standard for calibration of the assay. The development of MS-based methodology for absolute quantification of gluten is required for the accurate assessment of gluten, including hydrolysed forms, in food and beverages to support the industry, legislation and to protect consumers suffering from CD.


Subject(s)
Beer/analysis , Glutens/analysis , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Calibration , Chromatography, High Pressure Liquid/methods , Enzyme-Linked Immunosorbent Assay/methods , False Negative Reactions , Glutens/chemistry , Hydrolysis , Molecular Sequence Data
10.
PLoS One ; 8(2): e56452, 2013.
Article in English | MEDLINE | ID: mdl-23509606

ABSTRACT

BACKGROUND: Subjects suffering from coeliac disease, gluten allergy/intolerance must adopt a lifelong avoidance of gluten. Beer contains trace levels of hordeins (gluten) which are too high to be safely consumed by most coeliacs. Accurate measurement of trace hordeins by ELISA is problematic. METHODS: We have compared hordein levels in sixty beers, by sandwich ELISA, with the level determined using multiple reaction monitoring mass spectrometry (MRM-MS). RESULTS: Hordein levels measured by ELISA varied by four orders of magnitude, from zero (for known gluten-free beers) to 47,000 µg/mL (ppm; for a wheat-based beer). Half the commercial gluten-free beers were free of hordein by MS and ELISA. Two gluten-free and two low-gluten beers had zero ELISA readings, but contained significant hordein levels (p<0.05), or near average (60-140%) hordein levels, by MS, respectively. Six beers gave false negatives, with zero ELISA readings but near average hordein content by MS. Approximately 20% of commercial beers had ELISA readings less than 1 ppm, but a near average hordein content by MS. Several barley beers also contained undeclared wheat proteins. CONCLUSIONS: ELISA results did not correlate with the relative content of hordein peptides determined by MS, with all barley based beers containing hordein. We suggest that mass spectrometry is more reliable than ELISA, as ELISA enumerates only the concentration of particular amino-acid epitopes; this may vary between different hordeins and may not be related to the absolute hordein concentration. MS quantification is undertaken using peptides that are specific and unique, enabling the quantification of individual hordein isoforms. This outlines the problem of relying solely on ELISA determination of gluten in beverages such as beer and highlights the need for the development of new sensitive and selective quantitative assay such as MS.


Subject(s)
Beer/analysis , Celiac Disease/prevention & control , Chemistry Techniques, Analytical/methods , Enzyme-Linked Immunosorbent Assay/methods , Glutens/analysis , Mass Spectrometry/methods , Humans , Rosaniline Dyes
11.
PLoS One ; 8(2): e56456, 2013.
Article in English | MEDLINE | ID: mdl-23509607

ABSTRACT

BACKGROUND: Coeliacs require a life-long gluten-free diet supported by accurate measurement of gluten (hordein) in gluten-free food. The gluten-free food industry, with a value in excess of $6 billion in 2011, currently depends on two ELISA protocols calibrated against standards that may not be representative of the sample being assayed. AIM: The factors affecting the accuracy of ELISA analysis of hordeins in beer were examined. RESULTS: A simple alcohol-dithiothreitol extraction protocol successfully extracts the majority of hordeins from barley flour and malt. Primary hordein standards were purified by FPLC. ELISA detected different classes of purified hordeins with vastly different sensitivity. The dissociation constant (Kd) for a given ELISA reaction with different hordeins varied by three orders of magnitude. The Kd of the same hordein determined by ELISA using different antibodies varied by up to two orders of magnitude. The choice of either ELISA kit or hordein standard may bias the results and confound interpretation. CONCLUSIONS: Accurate determination of hordein requires that the hordein standard used to calibrate the ELISA reaction be identical in composition to the hordeins present in the test substance. In practice it is not feasible to isolate a representative hordein standard from each test food. We suggest that mass spectrometry is more reliable than ELISA, as ELISA enumerates only the concentration of particular amino-acid epitopes which may vary between different hordeins and may not be related to the absolute hordein concentration. MS quantification is undertaken using peptides that are specific and unique enabling the quantification of individual hordein isoforms.


Subject(s)
Celiac Disease/prevention & control , Chemistry Techniques, Analytical/methods , Enzyme-Linked Immunosorbent Assay/methods , Glutens/analysis , Calibration/standards , Chromatography, Liquid , Humans , Mass Spectrometry/methods
12.
J Proteome Res ; 11(1): 386-96, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21999962

ABSTRACT

The suite of prolamin proteins present in barley flour was characterized in this study, in which we provide spectral evidence for 3 previously characterized prolamins, 8 prolamins with only transcript evidence, and 19 genome-derived predicted prolamins. An additional 9 prolamins were identified by searching the complete spectral set against an unannotated translated EST database. Analyses of wort, the liquid extracted from the mashing process during beer production, and beer were undertaken and a similar suite of prolamins were identified. We have demonstrated by using tandem mass spectrometry that hordeins are indeed present in beer despite speculation to the contrary. Multiple reaction monitoring (MRM) mass spectrometry was used for the rapid analyses of hordein in barley (Hordeum vulgare L.) beer. A selection of international beers were analyzed and compared to the results obtained with hordein deletion beers. The hordein deletion beers were brewed from grains carrying mutations that prevented the accumulation of either B-hordeins (Risø 56) or C-hordeins (Risø 1508). No intact C-hordeins were detected in beer, although fragments of C-hordeins were present in wort. Multiple reaction monitoring analysis of non-barley based gluten (hordein)-free beers targeting the major hordein protein families was performed and confirmed the absence of hordein in several gluten-free commercial beers.


Subject(s)
Beer , Glutens/chemistry , Hordeum , Prolamins/chemistry , Amino Acid Sequence , Chymotrypsin/chemistry , Fermentation , Flour , Glutens/isolation & purification , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Mapping , Prolamins/isolation & purification , Proteolysis , Proteomics , Trypsin/chemistry
13.
Photochem Photobiol ; 83(5): 1167-73, 2007.
Article in English | MEDLINE | ID: mdl-17880511

ABSTRACT

UV-B irradiated rice leaves (Oryza sativa L.) contained four closely related flavonoids, with either an isoorientin or isovitexin aglycone. These flavonoids have previously been purified and characterized, and were added to artificial diets of the African bollworm (Helicoverpa armigera Hübner) at 0.1x concentration found in irradiated rice leaves. Consumption of different diets had relatively small effects on laval, pupal and adult duration, weight and survival, indicating the insects lived near normal life cycles on all diets. However, one of the compounds, flavonoid IIa, isovitexin-2''-O-beta-[6-O-E-p-coumaroylglucopyranoside], dramatically reduced the number of fertile eggs laid to 7% of control insects (P<0.001) when added to insect diets at 18 nmol gFW(-1) (14 ppm). A similar antifertility effect was observed when only the male partner consumed diet containing flavonoid IIa, indicating that the reduced fertility may be male specific. In contrast, the fecundity and fertility of insects eating diets containing the closely related flavonoids, isoorientin-2''-O-beta-[6-O-E-p-coumaroylglucopyranoside] or isoorientin-2''-O-beta-[6-O-E-p-feruloylglucopyranoside], were not significantly different to control diets.


Subject(s)
Fertility/drug effects , Glucosides/pharmacology , Isoflavones/pharmacology , Moths/drug effects , Oryza/radiation effects , Plant Leaves/radiation effects , Ultraviolet Rays , Animals , Female , Glucosides/isolation & purification , Isoflavones/isolation & purification , Larva/drug effects , Larva/growth & development , Male , Moths/growth & development , Moths/physiology , Oryza/chemistry , Plant Leaves/chemistry
14.
Plant Physiol ; 139(2): 652-63, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16169968

ABSTRACT

Proanthocyanidins (PAs), also called condensed tannins, can protect plants against herbivores and are important quality components of many fruits. Two enzymes, leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR), can produce the flavan-3-ol monomers required for formation of PA polymers. We isolated and functionally characterized genes encoding both enzymes from grapevine (Vitis vinifera L. cv Shiraz). ANR was encoded by a single gene, but we found two highly related genes encoding LAR. We measured PA content and expression of genes encoding ANR, LAR, and leucoanthocyanidin dioxygenase in grape berries during development and in grapevine leaves, which accumulated PA throughout leaf expansion. Grape flowers had high levels of PA, and accumulation continued in skin and seeds from fruit set until the onset of ripening. VvANR was expressed throughout early flower and berry development, with expression increasing after fertilization. It was expressed in berry skin and seeds until the onset of ripening, and in expanding leaves. The genes encoding LAR were expressed in developing fruit, particularly in seeds, but had low expression in leaves. The two LAR genes had different patterns of expression in skin and seeds. During grape ripening, PA levels decreased in both skin and seeds, and expression of genes encoding ANR and LAR were no longer detected. The results indicate that PA accumulation occurs early in grape development and is completed when ripening starts. Both ANR and LAR contribute to PA synthesis in fruit, and the tissue and temporal-specific regulation of the genes encoding ANR and LAR determines PA accumulation and composition during grape berry development.


Subject(s)
Proanthocyanidins/biosynthesis , Vitis/genetics , Vitis/metabolism , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , DNA, Plant/genetics , Fruit/growth & development , Fruit/metabolism , Gene Expression , Genes, Plant , Molecular Sequence Data , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phylogeny , Plant Leaves/metabolism , Vitis/growth & development
15.
Phytochemistry ; 65(22): 2987-94, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15504433

ABSTRACT

Infection of leaves of tea (Camellia sinensis (Kuntze) L, cv TRI 2025) which was susceptible to blister blight (Exobasidium vexans Massee), resulted in a shift of the proanthocyanidin stereochemistry away from 2,3-trans (e.g. catechin and gallocatechin) and towards 2,3-cis (e.g. epicatechin and epigallocatechin). Infection also resulted in increased gallic acid esterification of the initiating subunits of proanthocyanidins. This was shown by both mass spectroscopy and phloroglucinolysis. Proanthocyanidins isolated from healthy tissue had a predominantly 2,3-trans stereochemistry which accounted for 53% and 61% of the total initiating and extension units of proanthocyanidin, respectively. Conversely in infected tissue, proanthocyanidin subunits with a 2,3-trans stereochemistry accounted for 26% and 40% of the total initiating and extension units, respectively. Infection had little impact on the hydroxylation state of the B-rings of proanthocyanidins. The products of acid hydrolysis under oxidative conditions had a slight excess of di-hydroxylated B-rings with cyanidin accounting for 58.3+/-0.05% and 60.4+/-0.2% of the total anthocyanidin recovered following hydrolysis of proanthocyanidin isolated from infected and healthy leaves, respectively. Similar results were obtained by phloroglucinolysis.


Subject(s)
Camellia sinensis/metabolism , Camellia sinensis/microbiology , Plant Diseases , Proanthocyanidins/metabolism , Basidiomycota/physiology , Gallic Acid/metabolism , Isomerism , Mass Spectrometry , Plant Diseases/microbiology , Plant Leaves/metabolism
16.
Plant J ; 35(5): 624-36, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12940955

ABSTRACT

The anthocyanin and proanthocyanidin (PA) biosynthetic pathways share common intermediates until leucocyanidin, which may be used by leucoanthocyanidin dioxygenase (LDOX) to produce anthocyanin, or the enzyme leucoanthocyanidin reductase (LAR) to produce catechin, a precursor of PA. The Arabidopsis mutant tannin deficient seed 4 (tds4-1) has a reduced PA level and altered pattern PA accumulation. We identified the TDS4 gene as LDOX by complementation of the tds4-1 mutation either with a cosmid encoding LDOX or a 35S:LDOX construct. Independent Arabidopsis lines with a T-DNA insertion in the LDOX gene had a similar phenotype, and one was allelic to tds4-1. The seed phenotype of ban tds4 double mutants showed that LDOX precedes BANYULS (BAN) in the PA pathway, confirming recent biochemical characterisation of BAN as an anthocyanidin reductase. Double mutant analysis was also used to order the other TDS genes. Analysis of the PA intermediates in tds4-1 revealed three dimethylaminocinnamaldehyde (DMACA) reacting compounds that accumulated in extracts from developing seeds. Analysis of Arabidopsis PA and its precursors indicates that Arabidopsis, unlike many other plants, exclusively uses the epicatechin and not the catechin pathway to PA. Transmission electron microscopy (TEM) showed that the pattern observed when seeds of tds4 were stained with DMACA was a result of the accumulation of PA intermediates in the cytoplasm of endothelial cells. Fluorescent marker dyes were used to show that tds4 endothelial cells had multiple small vacuoles, instead of a large central vacuole as observed in the wild types (WT). These results show that in addition to its established role in the formation of anthocyanin, LDOX is also part of the PA biosynthesis pathway.


Subject(s)
Arabidopsis/genetics , Oxygenases/genetics , Proanthocyanidins/biosynthesis , Vacuoles/physiology , Alleles , Anthocyanins/biosynthesis , Arabidopsis/enzymology , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromosome Mapping , Cinnamates/pharmacology , Cotyledon/genetics , Cotyledon/growth & development , Cotyledon/metabolism , Genetic Complementation Test , Microscopy, Electron , Molecular Sequence Data , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Oxygenases/metabolism , Seeds/drug effects , Seeds/ultrastructure , Vacuoles/metabolism
17.
J Biol Chem ; 278(34): 31647-56, 2003 Aug 22.
Article in English | MEDLINE | ID: mdl-12788945

ABSTRACT

Leucoanthocyanidin reductase (LAR) catalyzes the synthesis of catechin, an initiating monomer of condensed tannin or proanthocyanidin (PA) synthesis, from 3,4-cis-leucocyanidin and thus is the first committed step in PA biosynthesis. The enzyme was purified to near homogeneity from PA-rich leaves of the legume Desmodium uncinatum (Jacq.) DC, partially sequenced and the corresponding cDNA cloned. The identity of the enzyme was confirmed by expressing active recombinant LAR in Escherichia coli and in tobacco and white clover. The enzyme is a monomer of 43 kDa (382 amino acids) and is most active synthesizing catechin (specific activity of approximately 10 micromol min+1 mg of protein+1) but also synthesizes afzelechin and gallocatechin. LAR is most closely related to the isoflavone reductase group of plant enzymes that are part of the Reductase-Epimerase-Dehydrogenase (RED) family of proteins. Unlike all other plant isoflavone reductase homologues that are about 320 amino acids long, LAR has an additional 65-amino acid C-terminal extension whose function is not known. Curiously, although Arabidopsis makes PA, there is no obvious LAR orthologue in the Arabidopsis genome. This may be because Arabidopsis seems to produce only an epicatechin, rather than a dual catechin/epicatechin-based PA similar to many other plants.


Subject(s)
Anthocyanins/biosynthesis , Fabaceae/metabolism , Oxidoreductases/metabolism , Proanthocyanidins , Amino Acid Sequence , Cloning, Molecular , DNA, Complementary , Fabaceae/enzymology , Molecular Sequence Data , Oxidoreductases/chemistry , Oxidoreductases/genetics , Phylogeny , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
18.
Plant Physiol ; 130(2): 561-76, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12376625

ABSTRACT

Proanthocyanidin (PA), or condensed tannin, is a polymeric flavanol that accumulates in a number of tissues in a wide variety of plants. In Arabidopsis, we found that PA precursors (detected histochemically using OsO(4)) accumulate in the endothelial cell layer of the seed coat from the two-terminal cell stage of embryo development onwards. To understand how PA is made, we screened mature seed pools of T-DNA-tagged Arabidopsis lines to identify mutants defective in the synthesis of PA and found six tds (tannin-deficient seed) complementation groups defective in PA synthesis. Mutations in these loci disrupt the amount (tds1, tds2, tds3, tds5, and tds6) or location and amount of PA (tds4) in the endothelial cell layer. The PA intermediate epicatechin has been identified in wild type and mutants tds1, tds2, tds3, and tds5 (which do not produce PA) and tds6 (6% of wild-type PA), whereas tds4 (2% of wild-type PA) produces an unidentified dimethylaminocinnamaldehyde-reacting compound, indicating that the mutations may be acting on genes beyond leucoanthocyanidin reductase, the first enzymatic reduction step dedicated to PA synthesis. Two other mutants were identified, an allele of tt7, which has a spotted pattern of PA deposition and produces only 8% of the wild-type level of type PA as propelargonidin, and an allele of tt8 producing no PA. Spotted patterns of PA deposition observed in seed of mutants tds4 and tt7-3 result from altered PA composition and distribution in the cell. Our mutant screen, which was not exhaustive, suggests that the cooperation of many genes is required for successful PA accumulation.


Subject(s)
Anthocyanins/biosynthesis , Arabidopsis/metabolism , Proanthocyanidins , Alleles , Anthocyanins/chemistry , Arabidopsis/chemistry , Arabidopsis/genetics , Catechin/metabolism , Chromatography, High Pressure Liquid , Cinnamates , Genetic Complementation Test , Hydrolyzable Tannins/metabolism , Molecular Structure , Mutation , Phenotype , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/metabolism , Seeds/chemistry , Seeds/genetics , Seeds/metabolism , Staining and Labeling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...