Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 10(44): 9054-9080, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36321474

ABSTRACT

Metal-porphyrinic frameworks are an important subclass of metal-organic frameworks (MOFs). These porous materials exhibit a large number of applications for sustainable development and related environmental considerations. Their attractive features include (1) as a free base or metalated with zinc(II) or iron(II or III), they are environmentally benign, and (2) they absorb visible light and are emissive and semi-conducting, making them convenient tools for sensing agrochemicals. But the key feature that makes these nano-sized pristine materials or their composites in many ways superior to most MOFs is their ability to photo-generate reactive oxygen species with visible light, including singlet oxygen. This review describes important issues related to agriculture, including controlled delivery of pesticides and agrochemicals, detection of pesticides and pathogenic metals, elimination of pesticides and toxic metals, and photodynamic antimicrobial activity, and has an important implication for food safety. This comprehensive review presents the progress of the rather rapid developments of these functional and increasingly nano-sized materials and composites in the area of sustainable agriculture.


Subject(s)
Metal-Organic Frameworks , Pesticides , Nanotechnology , Agriculture , Agrochemicals
2.
Inorg Chem ; 60(17): 13528-13538, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34424679

ABSTRACT

The design of new and inexpensive metal-containing functional materials is of great interest. Herein is reported a unique thermochromic near-IR emitting coordination polymer, 3D-[Cu8I8(L1)2]n, CP2, which is formed when ArS(CH2)4SAr (L1, Ar = 4-C6H4OMe) reacts with 2 equiv of CuI in EtCN. In MeCN, CP1 ([Cu4I4(L1)(MeCN)2]n, consisting of an alternating [-Cu4I4-L1-Cu4I4-L1-]n chain where the Cu4I4 cubane units bear two metal-bound MeCN molecules, is formed. Heat-driven elimination of these MeCN's in solid CP1 also leads to CP2 through a predisposed organization of the Cu4I4 units prone to fusion after MeCN eliminations (i.e., a rare case of template effect). The CP2 structure exhibits parallel 1D-(Cu8I8)n chains, (z-axis; designated 1D-[CuI]n) as secondary building units (SBU) held together by parallel thioether ligands (x,y-axes), forming a nonporous 3D network. The structure of this 1D-[CuI]n SBU is unprecedented and consists of a series of fused and twisted open Cu4I4 cubanes forming a fused poly(truncated rhombic dodecahedron). Unexpectedly, the compact 3D CP2 exhibits a solid-to-solid phase transition at 100 °C and a hysteresis of ∼20 °C. CP1 emits intensively (298 K: λemi = 564 nm; Φe = 0.35), whereas CP2 presents a strongly red-shifted weaker emission (298 K: λemi ∼ 740 nm, Φe < 0.0001). Moreover, CP2, which is stable over long periods of time, exhibits thermochromism where the emission intensity of the near-IR band decreases significantly at the benefit of a ligand-centered phosphorescence at 415 nm. Altogether, these properties listed above make CP2 exceptional. The low-energy singlet and triplet excited states have been assigned to ligand/metal-to-ligand charge transfer based on DFT and TD-DFT computations.

3.
Dalton Trans ; 50(30): 10629-10639, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34286777

ABSTRACT

A series of heteroleptic Ir(iii) complexes composed of two cyclometalated C^N ligands and one dipyrrinato ligand used as an ancillary ligand are synthesized and characterized. With the introduction of a fluorine atom, phenyl ring or diphenylamino group into both C^N ligands and by keeping the ancillary ligand unchanged, these Ir(iii) dipyrrinato phosphors do not show an obvious shift in their emission bands. They exhibit emissions extending well into the near-infrared region with an intense band located at around 685 nm in both photo- and electroluminescence spectra, and the deep red to near-infrared organic light emitting diodes (OLEDs) based on them afforded a maximum external quantum efficiency of 2.8%. Density functional theory (DFT) calculations show that both the electronic contributions on the lowest unoccupied molecular orbitals (LUMOs) and the highest energy semi-occupied molecular orbitals (HSOMOs) are mainly localized on the dipyrrinato ligand, indicating that the ancillary ligand, which remains unchanged in this series, exhibits a lower triplet state energy in the iridium phosphors than those involving the C^N ligands. Therefore a switch from "(C^N)2Ir" to dipyrrinato ligand-based emission is observed in these iridium(iii) complexes.

4.
Molecules ; 26(6)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810021

ABSTRACT

The derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) are pivotal ingredients for a large number of functional, stimuli-responsive materials and therapeutic molecules based on their photophysical properties, and there is a urgent need to understand and predict their optical traits prior to investing a large amount of resources in preparing them. Density functional theory (DFT) and time-dependent DFT (TDDFT) computations were performed to calculate the excitation energies of the lowest-energy singlet excited state of a large series of common BODIPY derivatives employing various functional aiming at the best possible combination providing the least deviations from the experimental values. Using the common "fudge" correction, a series of combinations was investigated, and a methodology is proposed offering equal or better performances than what is reported in the literature.


Subject(s)
Boron Compounds/chemistry , Fluorescent Dyes/chemistry , Models, Molecular , Density Functional Theory , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...