Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 43(9): 2134-2137, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29714764

ABSTRACT

We present a time domain diffuse Raman spectrometer for depth probing of highly scattering media. The system is based on, to the best of our knowledge, a novel time-correlated single-photon counting (TCSPC) camera that simultaneously acquires both spectral and temporal information of Raman photons. A dedicated non-contact probe was built, and time domain Raman measurements were performed on a tissue mimicking bilayer phantom. The fluorescence contamination of the Raman signal was eliminated by early time gating (0-212 ps) the Raman photons. Depth sensitivity is achieved by time gating Raman photons at different delays with a gate width of 106 ps. Importantly, the time domain can provide time-dependent depth sensitivity leading to a high contrast between two layers of Raman signal. As a result, an enhancement factor of 2170 was found for our bilayer phantom which is much higher than the values obtained by spatial offset Raman spectroscopy (SORS), frequency offset Raman spectroscopy (FORS), or hybrid FORS-SORS on a similar phantom.

2.
Br J Cancer ; 53(3): 385-91, 1986 Mar.
Article in English | MEDLINE | ID: mdl-3008800

ABSTRACT

The ESR spectrum, attributed to the ascorbic acid (ascorbyl) radical and obtained by exposing freeze dried material to air, can not be used as proof for the occurrence of in vivo free radical reactions. Depending on the method of freeze drying, the content of blood or hemolyzed blood is the dominant factor in creating higher than normal ESR signals in brain or related tissue. These findings explain why the signal, though larger in many human brain tumours than in their surroundings, is not indicative of malignancy. No differences are seen between oedematous and normal tissue. The ascorbyl radical is definitely not stable in aqueous solution, which indicates that fresh tissue sections can also not be used to study in vivo radicals by ESR.


Subject(s)
Ascorbic Acid/metabolism , Brain Neoplasms/metabolism , Electron Spin Resonance Spectroscopy , Animals , Brain/metabolism , Freeze Drying , Hemolysis , Humans , Oxygen/blood , Rats , Rats, Inbred Strains
SELECTION OF CITATIONS
SEARCH DETAIL
...