Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37905067

ABSTRACT

Medulloblastoma (MB) is the most prevalent brain cancer in children. Four subgroups of MB have been identified; of these, Group 3 is the most metastatic. Its genetics and biology remain less clear than the other groups, and it has a poor prognosis and few effective treatments available. Tumor hypoxia and the resulting metabolism are known to be important in the growth and survival of tumors but, to date, have been only minimally explored in MB. Here we show that Group 3 MB tumors do not depend on the canonical transcription factor hypoxia-inducible factor-1α (HIF-1α) to mount an adaptive response to hypoxia. We discovered that HIF-1α is rendered inactive either through post-translational methylation, preventing its nuclear localization specifically in Group 3 MB, or by a low expression that prevents modulation of HIF-target genes. Strikingly, we found that HIF-2 takes over the role of HIF-1 in the nucleus and promotes the activation of hypoxia-dependent anabolic pathways. The exclusion of HIF-1 from the nucleus in Group 3 MB cells enhances the reliance on HIF-2's transcriptional role, making it a viable target for potential anticancer strategies. By combining pharmacological inhibition of HIF-2α with the use of metformin, a mitochondrial complex I inhibitor to block respiration, we effectively induced Group 3 MB cell death, surpassing the effectiveness observed in Non-Group 3 MB cells. Overall, the unique dependence of MB cells, but not normal cells, on HIF-2-mediated anabolic metabolism presents an appealing therapeutic opportunity for treating Group 3 MB patients with minimal toxicity.

2.
Cancer Genet ; 256-257: 158-161, 2021 08.
Article in English | MEDLINE | ID: mdl-34157597

ABSTRACT

The C797S mutation encoded by EGFR exon 20 is classically observed as a tertiary event in EGFR-mutant non-small-cell lung carcinoma (NSCLC) primarily treated by first generation tyrosine kinase inhibitors (TKI) and secondarily treated by third-generation TKI, such as osimertinib, if the EGFR-T790M resistance mutation is detected. Recently, significant prolonged progression free survival has been observed following first-line osimertinib, in EGFR-mutant NSLC. While mechanisms of molecular resistance to first-generation TKI have been well studied, little is known about resistance induced by primary third-generation TKI treatments. We report the case of a 65 year-old female treated by first-line osimertinib for a multimetastatic exon 19-EGFR-mutant NSCLC. EGFR-C797S resistance mutation and PIK3CA mutation were detected together with the remaining EGFR-exon 19 deletion. This observation provides insights of acquired resistance to first line-osimertinib. It also highlights the importance of making molecular platforms which perform routine EGFR testing in lung cancer aware of the kind of therapeutic protocols given to the patient. Indeed, for rapid results or low-costs procedures, some targeted methods specifically targeting T790M may be used at relapse and may overlook alterations such as C797S or PIK3CA mutations. Targeted next generation sequencing is therefore a recommended option.


Subject(s)
Acrylamides/therapeutic use , Aniline Compounds/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation/genetics , Base Sequence , Bone Neoplasms/secondary , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Fatal Outcome , Female , Follow-Up Studies , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/diagnostic imaging , Middle Aged , Tomography, X-Ray Computed
3.
Cell Death Differ ; 12(5): 415-28, 2005 May.
Article in English | MEDLINE | ID: mdl-15746942

ABSTRACT

Hyperosmotic shock, energy depletion, or removal of extracellular Cl(-) activates Ca(2+)-permeable cation channels in erythrocyte membranes. Subsequent Ca(2+) entry induces erythrocyte shrinkage and exposure of phosphatidylserine (PS) at the erythrocyte surface. PS-exposing cells are engulfed by macrophages. The present study explored the signalling involved. Hyperosmotic shock and Cl(-) removal triggered the release of prostaglandin E(2) (PGE(2)). In whole-cell recording, activation of the cation channels by Cl(-) removal was abolished by the cyclooxygenase inhibitor diclophenac. In FACS analysis, phospholipase-A(2) inhibitors quinacrine and palmitoyltrifluoromethyl-ketone, and cyclooxygenase inhibitors acetylsalicylic acid and diclophenac, blunted the increase of PS exposure following Cl(-) removal. PGE(2) (but not thromboxane) induced cation channel activation, increase in cytosolic Ca(2+) concentration, cell shrinkage, PS exposure, calpain activation, and ankyrin-R degradation. The latter was attenuated by calpain inhibitors-I/II, while PGE(2)-induced PS exposure was not. In conclusion, hyperosmotic shock or Cl(-) removal stimulates erythrocyte PS exposure through PGE(2) formation and subsequent activation of Ca(2+)-permeable cation channels.


Subject(s)
Apoptosis/drug effects , Erythrocytes/drug effects , Prostaglandins E/metabolism , Ankyrins/metabolism , Annexins/metabolism , Calcium/metabolism , Calcium Channels/drug effects , Calpain/metabolism , Cell Size/drug effects , Chlorides/metabolism , Cyclooxygenase Inhibitors/pharmacology , Cytosol/drug effects , Diclofenac/pharmacology , Enzyme Inhibitors/pharmacology , Flow Cytometry , Humans , Models, Biological , Osmotic Pressure/drug effects , Patch-Clamp Techniques , Phosphatidylserines/metabolism , Phospholipases A/metabolism , Prostaglandins E/pharmacology , Quinacrine/pharmacology , Saline Solution, Hypertonic
4.
Naunyn Schmiedebergs Arch Pharmacol ; 367(4): 391-6, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12690431

ABSTRACT

Even though lacking mitochondria and nuclei erythrocytes do undergo apoptotic cell death which is characterized by breakdown of phosphatidylserine asymmetry (leading to annexin binding), membrane blebbing and cell shrinkage. Previously, we have shown that erythrocyte apoptosis is triggered by osmotic shrinkage at least in part through activation of cell volume-sensitive cation channels and subsequent Ca2+ entry. The channels could not only be activated by cell shrinkage but as well by replacement of Cl- with gluconate. Both, channel activity and annexin binding were sensitive to high concentrations of amiloride (1 mM). The present study has been performed to search for more effective blockers. To this end channel activity has been evaluated utilizing whole-cell patch-clamp and annexin binding determined by FACS analysis as an indicator of erythrocyte apoptosis. It is shown that either, increase of osmolarity or replacement of Cl- by gluconate triggers the activation of the cation channel which is inhibited by amiloride at 1 mM but not at 100 microM. Surprisingly, the cation channel was significantly more sensitive to the amiloride analogue ethylisopropylamiloride (EIPA, IC(50)=0.6+/-0.1 microM, n=5). Exposure of the cells to osmotic shock by addition of sucrose (850 mOsm) led to stimulation of annexin binding which was inhibited similarly by EIPA (IC(50)=0.2+/-0.2 microM, n=4). Moreover, annexin binding was inhibited by higher concentrations of HOE 642 (IC(50)=10+/-5 microM, n=5) and HOE 694 (IC(50)=12+/-6 microM, n=4). It is concluded that osmotic shock stimulates a cation channel which participates in the triggering of erythrocyte apoptosis. EIPA is an effective inhibitor of this cation channel and of channel mediated triggering of erythrocyte apoptosis.


Subject(s)
Amiloride/analogs & derivatives , Amiloride/pharmacology , Apoptosis/drug effects , Erythrocytes/physiology , Ion Channels/antagonists & inhibitors , Amiloride/administration & dosage , Annexins/metabolism , Apoptosis/physiology , Cations/metabolism , Cell Size/drug effects , Dose-Response Relationship, Drug , Erythrocytes/cytology , Erythrocytes/metabolism , Guanidines/pharmacology , Humans , In Vitro Techniques , Ion Channels/metabolism , Ion Channels/physiology , Osmotic Pressure/drug effects , Patch-Clamp Techniques , Sulfones/pharmacology
5.
Pflugers Arch ; 445(1): 74-9, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12397390

ABSTRACT

In a wide variety of cells, mitogenic factors release Ca(2+) from intracellular stores. The fall of the [Ca(2+)] within the lumen of the Ca(2+)-storing organelles triggers in many cells capacitative Ca(2+) entry (CCE). The present study was performed to elucidate the effect of insulin-like growth factor (IGF-1) on CCE in human embryonic kidney (HEK 293) cells. After depletion of Ca(2+) stores by thapsigargin, CCE was assessed by the increase in cytosolic free [Ca(2+)] (Fura-2 fluorescence imaging) when raising extracellular [Ca(2+)] from 0 to physiological concentrations. IGF-1 exposure (50 ng/ml) for 4 h in serum-free medium markedly enhanced CCE, while a 24-h exposure to IGF-1 depressed CCE profoundly. As some Ca(2+) channels are highly sensitive to the cell membrane potential, and as IGF-1 has been reported to enhance K(+) channel activity, the influence of K(+) channel blockers on the IGF-1-dependent stimulation of CCE was also tested. TEA, charybdotoxin and margatoxin decreased CCE. Similar to the total capacitative calcium entry, the fraction of CCE that was sensitive to K(+) channel blockers was increased after 4 h and decreased after 24 h exposure to IGF-1. Taken together, these data suggest that IGF-1 induces a transient increase followed by a decrease of CCE, and that these effects are at least partly dependent on IGF-1-induced K(+) channel activity.


Subject(s)
Calcium/metabolism , Insulin-Like Growth Factor I/physiology , Kidney/embryology , Blood Physiological Phenomena , Cell Line , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Humans , Patch-Clamp Techniques , Potassium Channel Blockers/pharmacology , Time Factors
6.
Cell Physiol Biochem ; 10(5-6): 417-28, 2000.
Article in English | MEDLINE | ID: mdl-11125224

ABSTRACT

Cell proliferation must - at some time point - lead to increase of cell volume and one of the hallmarks of apoptosis is cell shrinkage. At constant extracellular osmolarity those alterations of cell volume must reflect respective changes of cellular osmolarity which are hardly possible without the participation of cell volume regulatory mechanisms. Indeed, as shown for ras oncogene expressing 3T3 fibroblasts, cell proliferation is paralleled by activation of Na(+)/H(+) exchange and Na(+),K(+),2Cl(-) cotransport, the major transport systems accomplishing regulatory cell volume increase. Conversely, as evident from CD95-induced apoptotic cell death, apoptosis is paralleled by inhibition of Na(+)/H(+) exchanger and by activation of Cl(-) channels and release of the organic osmolyte taurine, major components of regulatory cell volume decrease. However, ras oncogene activation leads to activation and CD95 receptor triggering to inhibition of K(+) channels. The effects counteract the respective cell volume changes. Presumably, they serve to regulate cell membrane potential, which is decisive for Ca(++) entry through I(CRAC) and the generation of cytosolic Ca(++) oscillations in proliferating cells. As a matter of fact I(CRAC) is activated in ras oncogene expressing cells and inhibited in CD95-triggered cells. Activation of K(+) channels and Na(+)/H(+) exchanger as well as Ca(++) oscillations have been observed in a wide variety of cells upon exposure to diverse mitogenic factors. Conversely, diverse apoptotic factors have been shown to activate Cl(-) channels and organic osmolyte release. Inhibition of K(+) channels is apparently, however, not a constant phenomenon paralleling apoptosis which in some cells may even require the operation of K(+) channels. Moreover, cell proliferation may at some point require activation of Cl(-) channels. In any case, the alterations of cell volume are obviously important for the outcome, as cell shrinkage impedes cell proliferation and apoptosis can be elicited by increase of extracellular osmolarity. At this stage little is known about the interplay of cell volume regulatory mechanisms and the cellular machinery leading to mitosis or death of the cell. Thus, considerable further experimental effort is required in this exciting area of cell physiology.


Subject(s)
Apoptosis/physiology , Cell Division/physiology , Cell Size , Ion Channels/physiology , Sodium-Hydrogen Exchangers/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...