Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 32(16): 3505-3514.e7, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35835121

ABSTRACT

The hippocampus occupies a central role in mammalian navigation and memory. Yet an understanding of the rules that govern the statistics and granularity of the spatial code, as well as its interactions with perceptual stimuli, is lacking. We analyzed CA1 place cell activity recorded while rats foraged in different large-scale environments. We found that place cell activity was subject to an unexpected but precise homeostasis-the distribution of activity in the population as a whole being constant at all locations within and between environments. Using a virtual reconstruction of the largest environment, we showed that the rate of transition through this statistically stable population matches the rate of change in the animals' visual scene. Thus, place fields near boundaries were small but numerous, while in the environment's interior, they were larger but more dispersed. These results indicate that hippocampal spatial activity is governed by a small number of simple laws and, in particular, suggest the presence of an information-theoretic bound imposed by perception on the fidelity of the spatial memory system.


Subject(s)
Place Cells , Action Potentials , Animals , CA1 Region, Hippocampal , Hippocampus , Mammals , Population Dynamics , Rats , Space Perception
2.
Elife ; 102021 08 02.
Article in English | MEDLINE | ID: mdl-34338632

ABSTRACT

Rapid progress in technologies such as calcium imaging and electrophysiology has seen a dramatic increase in the size and extent of neural recordings. Even so, interpretation of this data requires considerable knowledge about the nature of the representation and often depends on manual operations. Decoding provides a means to infer the information content of such recordings but typically requires highly processed data and prior knowledge of the encoding scheme. Here, we developed a deep-learning framework able to decode sensory and behavioral variables directly from wide-band neural data. The network requires little user input and generalizes across stimuli, behaviors, brain regions, and recording techniques. Once trained, it can be analyzed to determine elements of the neural code that are informative about a given variable. We validated this approach using electrophysiological and calcium-imaging data from rodent auditory cortex and hippocampus as well as human electrocorticography (ECoG) data. We show successful decoding of finger movement, auditory stimuli, and spatial behaviors - including a novel representation of head direction - from raw neural activity.


Subject(s)
Acoustic Stimulation , Auditory Cortex/physiology , Deep Learning , Hippocampus/physiology , Movement , Neural Networks, Computer , Spatial Behavior , Animals , Electrocorticography , Fingers , Humans , Male , Mice , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...