Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Neuro Oncol ; 20(5): 642-654, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29099956

ABSTRACT

Background: Glioblastoma (GBM) is the most common and most aggressive primary malignant brain tumor. Standard-of-care treatment involves maximal surgical resection of the tumor followed by radiation and chemotherapy (temozolomide [TMZ]). The 5-year survival rate of patients with GBM is <10%, a colossal failure that has been partially attributed to intrinsic and/or acquired resistance to TMZ through O6-methylguanine DNA methyltransferase (MGMT) promoter methylation status in the tumor. Methods: A drug screening aimed at evaluating the potential recycling and repurposing of known drugs was conducted in TMZ-resistant GBM cell lines and primary cultures of newly diagnosed GBM with different MGMT promoter methylation status, phenotypic/genotypic background and subtype, and validated with sphere formation, cell migration assays, and quantitative invasive orthotopic in vivo models. Results: We identified hydroxyurea (HU) to synergize with TMZ in GBM cells in culture and in vivo, irrespective of MGMT promoter methylation status, subtype, and/or stemness. HU acts specifically on the S-phase of the cell cycle by inhibiting the M2 unit of enzyme ribonucleotide reductase. Knockdown of this enzyme using RNA interference and other known chemical inhibitors exerted a similar effect to HU in combination with TMZ both in culture and in vivo. Conclusions: We demonstrate preclinical efficacy of repurposing hydroxyurea in combination with TMZ for adjuvant GBM therapy. This combination benefit is of direct clinical interest given the extensive use of TMZ and the associated problems with TMZ-related resistance and treatment failure.


Subject(s)
Brain Neoplasms/drug therapy , DNA Replication/drug effects , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm/drug effects , Glioblastoma/drug therapy , Hydroxyurea/pharmacology , Temozolomide/pharmacology , Animals , Antineoplastic Agents, Alkylating/pharmacology , Apoptosis , Brain Neoplasms/classification , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Proliferation , Drug Repositioning , Glioblastoma/classification , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , Nucleic Acid Synthesis Inhibitors/pharmacology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
Methods Mol Biol ; 1098: 47-55, 2014.
Article in English | MEDLINE | ID: mdl-24166367

ABSTRACT

Mycoplasma contamination in mammalian cell culture is a common problem with serious consequences on experimental data, and yet many laboratories fail to perform regular testing. In this chapter, we describe a simple and sensitive mycoplasma detection assay based on the bioluminescent properties of the Gaussia luciferase reporter.


Subject(s)
Biosensing Techniques/methods , Copepoda/enzymology , Luciferases/metabolism , Luminescent Measurements/methods , Mycoplasma/isolation & purification , Animals , Copepoda/genetics , Culture Media , HEK293 Cells , Humans , Luciferases/genetics , Luciferases/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
4.
Anal Chem ; 85(21): 10205-10, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24131224

ABSTRACT

Reporters secreted into the conditioned medium of cells in culture or into blood in vivo have shown to be useful tools for simple and noninvasive monitoring of biological processes in real-time. Here, we characterize the naturally secreted Vargula luciferase as a secreted blood reporter and show that this reporter can be multiplexed with the secreted Gaussia luciferase and alkaline phosphatase for simultaneous monitoring of three different cellular processes in the same biological system. We applied this system to monitor the response of three different subsets of glioma cells to a clinically relevant chemotherapeutic agent in the same well in culture or animal in vivo. This system could be extended to any field to detect multiple processes in the same biological system and is amenable for high-throughput screening to find drugs that affect multiple cellular populations/phenomena simultaneously.


Subject(s)
Blood , Luciferases/blood , Animals , Cell Line, Tumor , Humans , Mice , Mice, Nude
5.
Anal Chem ; 85(5): 3006-12, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23425213

ABSTRACT

Gaussia Luciferase (Gluc) has proven to be a powerful mammalian cell reporter for monitoring numerous biological processes in immunology, virology, oncology, and neuroscience. Current limitations of Gluc as a reporter include its emission of blue light, which is absorbed by mammalian tissues, limiting its use in vivo, and a flash-type bioluminescence reaction, making it unsuited for high-throughput applications. To overcome these limitations, a library of Gluc variants was generated using directed molecular evolution and screened for relative light output, a shift in emission spectrum, and glow-type light emission kinetics. Several variants with a 10-15 nm shift in their light emission peak were found. Further, a Gluc variant that catalyzes a glow-type bioluminescence reaction, suited for high-throughput applications, was also identified. These results indicate that molecular evolution could be used to modulate Gluc bioluminescence reaction characteristics.


Subject(s)
Directed Molecular Evolution , Light , Luciferases/genetics , Luciferases/metabolism , Luminescent Measurements , Mutation , Amino Acid Sequence , Luciferases/chemistry , Molecular Sequence Data
6.
Diabetes ; 54(9): 2576-85, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16123345

ABSTRACT

We recently reported that the activation of H-Ras represents one of the signaling steps underlying the interleukin-1beta (IL-1beta)-mediated metabolic dysfunction of the islet beta-cell. In the present study, we examined potential contributory roles of membrane-associated, cholesterol-enriched lipid rafts/caveolae and their constituent proteins (e.g., caveolin-1 [Cav-1]) as potential sites for IL-1beta-induced nitric oxide (NO) release in the isolated beta-cell. Disruption of lipid rafts (e.g., with cyclodextrin) markedly reduced IL-1beta-induced gene expression of inducible NO synthase (iNOS) and NO release from beta-cells. Immunologic and confocal microscopic evidence also suggested a transient but significant stimulation of tyrosine phosphorylation of Cav-1 in beta-cells briefly (for 15 min) exposed to IL-1beta that was markedly attenuated by three structurally distinct inhibitors of protein tyrosine phosphorylation. Overexpression of an inactive mutant of Cav-1 lacking the tyrosine phosphorylation site (Y14F) or an siRNA-mediated Cav-1 knock down also resulted in marked attenuation of IL-1beta-induced iNOS gene expression and NO release from these cells, thus further implicating Cav-1 in this signaling cascade. IL-1beta treatment also increased (within 20 min) the translocation of H-Ras into lipid rafts. Here we provide the first evidence to suggest that tyrosine phosphorylation of Cav-1 and subsequent interaction among members of the Ras signaling pathway within the membrane lipid microdomains represent early signaling mechanisms of IL-1beta in beta-cells.


Subject(s)
Interleukin-1/physiology , Islets of Langerhans/physiology , Membrane Microdomains/physiology , Nitric Oxide/metabolism , Animals , Cell Line , Gene Expression Regulation/physiology , Genes, ras , Male , Protein-Tyrosine Kinases/antagonists & inhibitors , Rats , Rats, Sprague-Dawley , Signal Transduction
7.
Endocr Res ; 29(3): 363-76, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14535637

ABSTRACT

We have previously demonstrated regulatory roles for Rho subfamily of G-proteins in glucose- and calcium-induced insulin secretion. Herein, we examined regulation by these proteins of insulin secretion from betaTC3 cells elicited by mitochondrial fuels, such as the succinic acid methyl ester (SAME). Preincubation of these cells with Clostridium difficile toxin-B (200 ng/mL), which monoglucosylates and inactivates Cdc42 and Rac1, markedly decreased (> 70%) SAME-induced insulin secretion. Furthermore, exposure of betaTC3 cells to GGTI-2147 (20 microM), a selective inhibitor of the requisite prenylation of Rac1 and Cdc42, significantly reduced (> 80%) SAME-induced insulin release, suggesting that post-translational prenylation of these proteins is necessary for SAME-induced insulin release. Western blot analysis indicated localization of Cdc42, Rac1, and Ras in the beta cell mitochondrial fraction. Confocal microscopy revealed a modest, but inconsistent, increase in the association of either Rac1 or Cdc42 with Mitotracker, a mitochondrial marker, following exposure to SAME. These data suggest that activation of preexisting intramitochondrial Rac1 and Cdc42 may be sufficient to regulate SAME-induced insulin secretion. Together, our findings support a role for G-proteins in insulin secretion at a step dependent on mitochondrial metabolism. They also identify mevalonate-derived, isoprenoid modified Rho G-proteins as specific signaling molecules in recently proposed succinate mechanism of insulin release.


Subject(s)
Bacterial Proteins , Insulin/metabolism , Islets of Langerhans/metabolism , Leucine/analogs & derivatives , Succinic Acid/pharmacology , rho GTP-Binding Proteins/metabolism , Animals , Bacterial Toxins/pharmacology , Cell Line , Cytotoxins/pharmacology , Imidazoles/pharmacology , Insulin Secretion , Islets of Langerhans/cytology , Islets of Langerhans/drug effects , Leucine/pharmacology , Mitochondria/metabolism , Rats , Succinic Acid/antagonists & inhibitors , cdc42 GTP-Binding Protein/metabolism , rac GTP-Binding Proteins/metabolism
8.
Biochem Pharmacol ; 66(9): 1681-94, 2003 Nov 01.
Article in English | MEDLINE | ID: mdl-14563479

ABSTRACT

We recently demonstrated that functional inactivation of H-Ras results in significant reduction in interleukin 1 beta (IL-1 beta)-mediated effects on isolated beta cells. Since palmitoylation of Ras has been implicated in its membrane targeting, we examined the contributory roles of palmitoylation of Ras in IL-1 beta-induced nitric oxide (NO) release and subsequent activation of caspases. Preincubation of HIT-T15 or INS-1 cells with cerulenin (CER, 134 microM; 3 hr), an inhibitor of protein palmitoylation, significantly reduced (-95%) IL-1 beta-induced NO release from these cells. 2-Bromopalmitate, a structurally distinct inhibitor of protein palmitoylation, but not 2-hydroxymyristic acid, an inhibitor of protein myristoylation, also reduced (-67%) IL-1 beta-induced NO release from HIT cells. IL-induced inducible nitric oxide synthase gene expression was markedly attenuated by CER. Further, CER markedly reduced incorporation of [3H]palmitate into H-Ras and caused significant accumulation of Ras in the cytosolic fraction. CER-treatment also prevented IL-1 beta-induced activation of caspase 3 in these cells. Moreover, N-monomethyl-L-arginine, a known inhibitor of inducible nitric oxide synthase, markedly inhibited IL-induced activation of caspase 3, thus establishing a link between IL-induced NO release and caspase 3 activation. Depletion of membrane-bound cholesterol using methyl-beta-cyclodextrin, which also disrupts caveolar organization within the plasma membrane, abolished IL-1 beta-induced NO release suggesting that IL-1 beta-mediated Ras-dependent signaling in these cells involves the intermediacy of caveolae and their key constituents (e.g. caveolin-1) in isolated beta cells. Confocal light microscopic evidence indicated significant colocalization of Ras with caveolin-1. Taken together, our data provide the first evidence to indicate that palmitoylation of Ras is essential for IL-1 beta-induced cytotoxic effects on the islet beta cell.


Subject(s)
Caspases/metabolism , Interleukin-1/pharmacology , Islets of Langerhans/drug effects , Nitric Oxide/metabolism , Palmitates/metabolism , ras Proteins/physiology , Acylation , Antifungal Agents/pharmacology , Caspase 3 , Cells, Cultured , Cerulenin/pharmacology , Humans , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/metabolism , Methylation , Oxidation-Reduction , ras Proteins/metabolism
9.
J Pharmacol Exp Ther ; 303(1): 82-8, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12235236

ABSTRACT

The majority of low molecular weight G proteins undergoes a series of post-translational modification steps, e.g., isoprenylation, at their C-terminal cysteine, which seem to be critical for the transport of the modified proteins to the membrane sites for interaction with their respective effector proteins. Using lovastatin, an inhibitor of mevalonic acid, and hence, isoprenoid biosynthesis, we demonstrated previously that protein isoprenylation is critical for physiological insulin secretion from normal rat islets. Herein, we used more selective synthetic inhibitors of protein prenylation to examine their effects on glucose- and calcium-mediated insulin secretion from betaTC3 cells. Both 3-allyl- and vinylfarnesols, which inhibit and/or modulate protein farnesyl transferases, significantly (80-95%) inhibited glucose- and KCl-stimulated insulin secretion from these cells. In a similar manner, the allyl and vinyl forms of geranylgeraniol, reagents targeted toward protein geranylation, attenuated insulin secretion elicited by glucose and KCl. Furthermore, manumycin A, a natural inhibitor of protein farnesylation, and geranylgeranyl transferase inhibitor-2147 (GGTI-2147), a peptidomimetic inhibitor of protein geranylgeranylation, also inhibited glucose- and KCl-induced insulin secretion to comparable degrees. Treatment of betaTC3 cells with either 3-vinylfarnesol or 3-vinyl geranylgeraniol resulted in accumulation of unprenylated proteins in the cytosolic fraction. These data further support our original formulation that inhibition of isoprenylation of small molecular weight G proteins might impede their interaction with their putative effectors, which may be required for physiological insulin secretion.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Calcium/pharmacology , Enzyme Inhibitors/pharmacology , Glucose/pharmacology , Imidazoles/pharmacology , Insulin/metabolism , Islets of Langerhans/metabolism , Leucine/pharmacology , Protein Prenylation/drug effects , Animals , Cell Line , Cell Survival/drug effects , GTP-Binding Proteins/metabolism , Guanosine Triphosphate/metabolism , Insulin Secretion , Islets of Langerhans/drug effects , Kinetics , Leucine/analogs & derivatives , Polyenes/pharmacology , Polyunsaturated Alkamides , Potassium Chloride/pharmacology , Rats
10.
Arch Biochem Biophys ; 398(2): 160-9, 2002 Feb 15.
Article in English | MEDLINE | ID: mdl-11831846

ABSTRACT

Nucleoside diphosphate kinase (NDPK) catalyzes the transfer of terminal phosphates from nucleoside triphosphates to nucleoside diphosphates to yield nucleotide triphosphates. The present study was undertaken to localize and characterize the mitochondrial isoform of NDPK (mNDPK) in the pancreatic beta cell since it could contribute to the generation of mitochondrial nucleotide triphosphates and, thereby, to the mitochondrial high-energy phosphate metabolism of the pancreatic beta cell. Mitochondrial fractions from the insulin-secreting beta cells were isolated by differential centrifugation. mNDPK activity was assayed as the amount of [(3)H]GTPgammaS formed from ATPgammaS and [(3)H]GDP. Incubation of isolated mitochondrial extracts with either [gamma-(32)P]ATP or GTP resulted in the formation [(32)P]NDPK, which could be immunoprecipitated by an anti-NDPK serum. mNDPK exhibited saturation kinetics with respect to its nucleoside diphosphate acceptors and nucleoside triphosphate donors and sensitivity to known inhibitors of NDPK (e.g., uridine diphosphate and cromoglycate). By Western blot analyses, at least three isoforms of NDPK were identified in various subcellular fractions of the beta cell. The nm23-H1 (NDPK-A) was predominantly soluble whereas nm23-H2 (NDPK-B) was associated with the soluble as well as membranous fractions. The mitochondrial isoform of NDPK, nm23-H4, was uniformly distributed in the beta cell mitochondrial subfractions. A significant amount of NDPK (as determined by the catalytic activity and immunological methods) was recovered in the immunoprecipitates of mitochondrial fraction precipitated with an antiserum directed against succinyl-CoA synthetase (SCS), suggesting that NDPK might remain complexed with SCS. We provide the first evidence for the localization of a mitochondrial isoform of the NDPK in the islet beta cell and thus offer a potential mechanism for the generation of intramitochondrial GTP which, unlike ATP, is not transported into mitochondria via the classical nucleotide translocase. Further work will be required to determine the importance of the NDPK/SCS complex to normal beta cell function in the secretion of insulin.


Subject(s)
Islets of Langerhans/enzymology , Mitochondria/enzymology , Nucleoside-Diphosphate Kinase/metabolism , Succinate-CoA Ligases/metabolism , Animals , In Vitro Techniques , Islets of Langerhans/ultrastructure , Isoenzymes/analysis , Isoenzymes/metabolism , Male , Nucleoside-Diphosphate Kinase/analysis , Protein Binding , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...