Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 7058, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31064998

ABSTRACT

We conduct a cartography of rhodopsin-like non-olfactory G protein-coupled receptors in the Ensembl database. The most recent genomic data (releases 90-92, 90 vertebrate genomes) are analyzed through the online interface and receptors mapped on phylogenetic guide trees that were constructed based on a set of ~14.000 amino acid sequences. This snapshot of genomic data suggest vertebrate genomes to harbour 142 clades of GPCRs without human orthologues. Among those, 69 have not to our knowledge been mentioned or studied previously in the literature, of which 28 are distant from existing receptors and likely new orphans. These newly identified receptors are candidates for more focused evolutionary studies such as chromosomal mapping as well for in-depth pharmacological characterization. Interestingly, we also show that 37 of the 72 human orphan (or recently deorphanized) receptors included in this study cluster into nineteen closely related groups, which implies that there are less ligands to be identified than previously anticipated. Altogether, this work has significant implications when discussing nomenclature issues for GPCRs.


Subject(s)
Genome , Receptors, G-Protein-Coupled/genetics , Rhodopsin/genetics , Vertebrates/genetics , Amino Acid Sequence , Animals , Data Mining , Databases, Genetic , Genomics/methods , Humans , Phylogeny
2.
Cell Chem Biol ; 25(2): 224-229.e2, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29276046

ABSTRACT

Knowledge of the full target space of bioactive substances, approved and investigational drugs as well as chemical probes, provides important insights into therapeutic potential and possible adverse effects. The existing compound-target bioactivity data resources are often incomparable due to non-standardized and heterogeneous assay types and variability in endpoint measurements. To extract higher value from the existing and future compound target-profiling data, we implemented an open-data web platform, named Drug Target Commons (DTC), which features tools for crowd-sourced compound-target bioactivity data annotation, standardization, curation, and intra-resource integration. We demonstrate the unique value of DTC with several examples related to both drug discovery and drug repurposing applications and invite researchers to join this community effort to increase the reuse and extension of compound bioactivity data.


Subject(s)
Consensus , Knowledge Bases , Drug Discovery , Drug Interactions , Drug Repositioning , Humans , Pharmaceutical Preparations
3.
BMC Bioinformatics ; 18(Suppl 10): 393, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28929971

ABSTRACT

BACKGROUND: Dispersed biomedical databases limit user exploration to generate structured knowledge. Linked Data unifies data structures and makes the dispersed data easy to search across resources, but it lacks supporting human cognition to achieve insights. In addition, potential errors in the data are difficult to detect in their free formats. Devising a visualization that synthesizes multiple sources in such a way that links between data sources are transparent, and uncertainties, such as data conflicts, are salient is challenging. RESULTS: To investigate the requirements and challenges of uncertainty-aware visualizations of linked data, we developed MediSyn, a system that synthesizes medical datasets to support drug treatment selection. It uses a matrix-based layout to visually link drugs, targets (e.g., mutations), and tumor types. Data uncertainties are salient in MediSyn; for example, (i) missing data are exposed in the matrix view of drug-target relations; (ii) inconsistencies between datasets are shown via overlaid layers; and (iii) data credibility is conveyed through links to data provenance. CONCLUSIONS: Through the synthesis of two manually curated datasets, cancer treatment biomarkers and drug-target bioactivities, a use case shows how MediSyn effectively supports the discovery of drug-repurposing opportunities. A study with six domain experts indicated that MediSyn benefited the drug selection and data inconsistency discovery. Though linked publication sources supported user exploration for further information, the causes of inconsistencies were not easy to find. Additionally, MediSyn could embrace more patient data to increase its informativeness. We derive design implications from the findings.


Subject(s)
Databases, Factual , Drug Therapy , Software , Uncertainty , Adult , Female , Humans , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...