Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 175(3): e13946, 2023.
Article in English | MEDLINE | ID: mdl-37265389

ABSTRACT

Boron modulates a wide range of plant developmental processes; however, the regulation of early fruit development by boron remains poorly defined. We report here the physiological, anatomical, metabolic, and transcriptomic impact of pre-flowering boron supply on the sweet cherry fruit set and development (S1-S5 stages). Our findings revealed that endogenous boron content increased in early growth stages (S1 and S2 stages) following preflowering boron exogenous application. Boron treatment resulted in increased fruit set (S1 and S2 stages) and mesocarp cell enlargement (S2 stage). Various sugars (e.g., fructose and glucose), alcohols (e.g., myo-inositol and maltitol), organic acids (e.g., malic acid and citric acid), amino acids (e.g., valine and serine) accumulated in response to boron application during the various developmental stages (S1-S5 stages). Transcriptomic analysis at early growth (S1 and S2 stages) identified boron-responsive genes that are mainly related to secondary metabolism, amino acid metabolism, calcium-binding, ribosome biogenesis, sugar homeostasis and especially to photosynthesis. We found various boron-induced/repressed genes, including those specifically involved in growth. Several heat shock proteins displayed distinct patterns during the initial growth in boron-exposed fruit. Gene analysis also discovered several putative candidate genes like PavPIP5K9, PavWAT1, PavMIOX, PavCAD1, PavPAL1 and PavSNRK2.7, which could facilitate the investigation of the molecular rationale underlying boron function in early fruit growth. Substantial changes in the expression of numerous transcription factors, including PavbHLH25, PavATHB.12L, and PavZAT10.1,.2 were noticed in fruits exposed to boron. The current study provides a baseline of information for understanding the metabolic processes regulated by boron during sweet cherry fruit early growth and fruit development in general.


Subject(s)
Prunus avium , Fruit/genetics , Fruit/metabolism , Boron/analysis , Boron/metabolism , Gene Expression Profiling , Transcriptome , Gene Expression Regulation, Plant , Plant Proteins/metabolism
2.
iScience ; 26(1): 105917, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36691616

ABSTRACT

The term "terroir" has been widely employed to link differential geographic phenotypes with sensorial signatures of agricultural food products, influenced by agricultural practices, soil type, and climate. Nowadays, the geographical indications labeling has been developed to safeguard the quality of plant-derived food that is linked to a certain terroir and is generally considered as an indication of superior organoleptic properties. As the dynamics of agroecosystems are highly intricate, consisting of tangled networks of interactions between plants, microorganisms, and the surrounding environment, the recognition of the key molecular components of terroir fingerprinting remains a great challenge to protect both the origin and the safety of food commodities. Furthermore, the contribution of microbiome as a potential driver of the terroir signature has been underestimated. Herein, we present a first comprehensive view of the multi-omic landscape related to transcriptome, proteome, epigenome, and metagenome of the popular Protected Geographical Indication potatoes of Naxos.

3.
Plant Physiol ; 191(3): 1913-1933, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36508356

ABSTRACT

Plant responses to salinity are becoming increasingly understood, however, salt priming mechanisms remain unclear, especially in perennial fruit trees. Herein, we showed that low-salt pre-exposure primes olive (Olea europaea) plants against high salinity stress. We then performed a proteogenomic study to characterize priming responses in olive roots and leaves. Integration of transcriptomic and proteomic data along with metabolic data revealed robust salinity changes that exhibit distinct or overlapping patterns in olive tissues, among which we focused on sugar regulation. Using the multi-crossed -omics data set, we showed that major differences between primed and nonprimed tissues are mainly associated with hormone signaling and defense-related interactions. We identified multiple genes and proteins, including known and putative regulators, that reported significant proteomic and transcriptomic changes between primed and nonprimed plants. Evidence also supported the notion that protein post-translational modifications, notably phosphorylations, carbonylations and S-nitrosylations, promote salt priming. The proteome and transcriptome abundance atlas uncovered alterations between mRNA and protein quantities within tissues and salinity conditions. Proteogenomic-driven causal model discovery also unveiled key interaction networks involved in salt priming. Data generated in this study are important resources for understanding salt priming in olive tree and facilitating proteogenomic research in plant physiology.


Subject(s)
Models, Genetic , Olea , Salt Tolerance , Olea/drug effects , Olea/genetics , Salt Tolerance/genetics , Plant Roots/drug effects , Plant Leaves/drug effects , Salt Stress/genetics , Proteomics , Transcriptome/drug effects , Saline Waters/pharmacology , Carbohydrate Metabolism/drug effects , Gene Expression Regulation, Plant/drug effects
4.
Plant Physiol Biochem ; 189: 139-152, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36087439

ABSTRACT

The role of calcium in fruit ripening has been established, however knowledge regarding the molecular analysis at fruit tissue-level is still lacking. To address this, we examined the impact of foliar-applied calcium (0.5% CaCl2) in the ripening metabolism in skin and flesh tissues of the sweet cherry 'Tragana Edessis' fruit at the harvest stage. Exogenously applied calcium increased endogenous calcium level in flesh tissue and reduced fruit respiration rate and cracking traits. Fruit metabolomic along with transcriptomic analysis unraveled common and tissue-specific metabolic pathways associated with calcium feeding. Treatment with calcium diminished several alcohols (arabitol, sorbitol), sugars (fructose, maltose), acids (glyceric acid, threonic acid) and increased ribose and proline in both fruit tissues. Moreover, numerous primary metabolites, such as proline and galacturonic acid, were differentially accumulated in calcium-exposed tissues. Calcium-affected genes that involved in ubiquitin/ubl conjugation and cell wall biogenesis/degradation were differentially expressed between skin and flesh samples. Notably, skin and flesh tissues shared common calcium-responsive genes and exhibited substantial similarity in their expression patterns. In both tissues, calcium activated gene expression, most strongly those involved in plant-pathogen interaction, plant hormone signaling and MAPK signaling pathway, thus affecting related metabolic processes. By contrast, calcium depressed the expression of genes related to TCA cycle, oxidative phosphorylation, and starch/sucrose metabolism in both tissues. This work established both calcium-driven common and specialized metabolic suites in skin and flesh cherry tissues, demonstrating the utility of this approach to characterize fundamental aspects of calcium in fruit physiology.


Subject(s)
Prunus avium , Alcohols/metabolism , Calcium/metabolism , Calcium Chloride , Fructose/metabolism , Fruit/metabolism , Glyceric Acids/metabolism , Maltose/metabolism , Plant Growth Regulators/metabolism , Proline/metabolism , Prunus avium/metabolism , Ribose/metabolism , Sorbitol/metabolism , Starch/metabolism , Sucrose/metabolism , Ubiquitins/metabolism
5.
Plant Physiol Biochem ; 179: 179-190, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35358868

ABSTRACT

Fruit is constantly challenged by wounding events, inducing accelerated ripening and irreversible metabolic changes. However, cognate mechanisms that regulate this process are little known. To expand our knowledge of ripening metabolism induced by wounding, an artificial-wound global transcriptome investigation combined with metabolite profiling study was conducted in postharvest kiwifruit (Actinidia chinensis var. deliciosa (A. Chev.) A. Chev. 'Hayward'). Wounding treatment promoted fruit ripening, as demonstrated by changes in fruit firmness, ethylene production and respiration activity determined periodically during a ripening period of 8 d at room temperature. Calcium imaging using fluorescent probe Fluo-3 AM revealed spatial dynamics of Ca2+ signaling in the wounding area following 8d ripening. Several sugars including fructose, glucose, and sucrose as well as organic acids such as citric, succinic and galacturonic acid were increased by wounding. Changes of various amino acids in wounded-treated fruit, especially 5-oxoproline and valine along with alternations of soluble alcohols, like myo-inositol were detected. Gene expression analysis of the wounded fruit showed increased expression of genes that are mainly involved in defense response (e.g., AdTLP.1-3, AdPP2C.1-2, AdMALD1), calcium ion binding (e.g., AdCbEFh, AdCLR, AdANX), TCA cycle (e.g., AdMDH.1, AdMDH.2, AdCS), sugars (e.g., AdSUSA.1, AdSPS4, AdABFr), secondary metabolism (e.g., AdPAL.1-3, AdCCR, AdHCT.1-2), lipid processing (e.g., AdGELP.1-4, AdGELP) and pectin degradation (e.g., AdPE.1-2, AdPAE.1-2, AdPG.1-2) as well as in ethylene (AdERF7, AdERF1B, AdACO.1-4) and auxin (AdICE, AdAEFc, AdASII) synthesis and perception. Moreover, genes related to aquaporins, such as AdAQP2, AdAQP4 and AdAQP7 were down-regulated in fruit exposed to wounding. These results demonstrate multiple metabolic points of wounding regulatory control during kiwifruit ripening and provide insights into the molecular basis of wounding-mediated ripening.


Subject(s)
Actinidia , Actinidia/genetics , Citric Acid Cycle , Fruit/metabolism , Gene Expression Regulation, Plant , Transcriptome
6.
Mol Biol Rep ; 49(4): 2687-2693, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35034286

ABSTRACT

BACKGROUND: Natural products are not only positioned in the heart of traditional medicine but also in modern medicine as many current drugs are coming from natural sources. Apart from the field of medicine and therapeutics, natural products are broadly used in other industrial fields such as nutrition, skincare products and nanotechnology. METHODS AND RESULTS: The aim of this study was to assess the effects of sweet cherry (Prunus avium L.) fruit extract from the Greek native cultivar 'Vasiliadi', on the human 2D and 3D in vitro models in order to investigate its potential impact on skin. We focused on 2D culture of primary normal human epidermal keratinocytes (NHEK) that were treated with sweet cherry fruit extract. In the first place, we targeted fruit extract potential cytotoxicity by determining ATP intracellular levels. Furthermore, we assessed its potential skin irritability by using 3D skin model. To better understand the bioactivity of sweet cherry fruit. extract, we used qPCR to study the expression of various genes that are implicated in the skin functions. Our experiments showed that sweet cherry fruit extract is non-toxic in 2D keratinocytes culture as well as non-irritant in 3D skin model. Our results revealed that the extract mediated important pathways for the optimum epidermis function such as cell proliferation, immune and inflammatory response. CONCLUSION: The sweet cherry fruit extracts possesses significant activity in epidermis function without any potential of cytotoxicity or skin irritability, which makes it a rather promising active agent for skincare.


Subject(s)
Prunus avium , Fruit/genetics , Humans , Plant Extracts/metabolism , Plant Extracts/pharmacology , Prunus avium/metabolism , Skin
7.
Plant J ; 109(5): 1319-1336, 2022 03.
Article in English | MEDLINE | ID: mdl-34842310

ABSTRACT

Genome-wide transcriptome analysis provides systems-level insights into plant biology. Due to the limited depth of quantitative proteomics our understanding of gene-protein-complex stoichiometry is largely unknown in plants. Recently, the complexity of the proteome and its cell-/tissue-specific distribution have boosted the research community to the integration of transcriptomics and proteomics landscapes in a proteogenomic approach. Herein, we generated a quantitative proteome and transcriptome abundance atlas of 15 major sweet cherry (Prunus avium L., cv 'Tragana Edessis') tissues represented by 29 247 genes and 7584 proteins. Additionally, 199 984 alternative splicing events, particularly exon skipping and alternative 3' splicing, were identified in 23 383 transcribed regions of the analyzed tissues. Common signatures as well as differences between mRNA and protein quantities, including genes encoding transcription factors and allergens, within and across the different tissues are reported. Using our integrated dataset, we identified key putative regulators of fruit development, notably genes involved in the biosynthesis of anthocyanins and flavonoids. We also provide proteogenomic-based evidence for the involvement of ethylene signaling and pectin degradation in cherry fruit ripening. Moreover, clusters of genes and proteins with similar and different expression and suppression trends across diverse tissues and developmental stages revealed a relatively low RNA abundance-to-protein correlation. The present proteogenomic analysis allows us to identify 17 novel sweet cherry proteins without prior protein-level annotation evidenced in the currently available databases. To facilitate use by the community, we also developed the Sweet Cherry Atlas Database (https://grcherrydb.com/) for viewing and data mining these resources. This work provides new insights into the proteogenomics workflow in plants and a rich knowledge resource for future investigation of gene and protein functions in Prunus species.


Subject(s)
Ascomycota , Proteogenomics , Prunus avium , Anthocyanins/metabolism , Ascomycota/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Proteome/genetics , Proteome/metabolism , Prunus avium/genetics , Transcriptome/genetics , Trees/genetics
8.
Comput Struct Biotechnol J ; 19: 5406-5420, 2021.
Article in English | MEDLINE | ID: mdl-34667535

ABSTRACT

Sweet cherry fruit cracking is a complex physiological disorder that causes significant economic losses. Despite many years of research there is a lack of understanding of the mechanisms involved in cracking. Here, skin and flesh tissue from the cracking susceptible 'Early Bigi' and the cracking tolerant 'Regina' cultivars were sampled prior and just after water dipping treatment to identify water-affected metabolic networks that putatively involved in fruit cracking. Primary metabolites, most strongly those involved in sugars and amino acid metabolism, such as glucose and asparagine, shifted in 'Early Bigi' compared with 'Regina' tissues following water exposure. Comparisons between cultivars, tissues and dipping points identified significant differentially expressed genes. Particularly, genes related to abscisic acid, ethylene biosynthesis, pectin metabolism, expansins and aquaporins were altered in water-exposed tissues. To further characterize the role of these genes in cracking, their single nucleotide variants of the coding regions was studied in another eight sweet cherry cultivars, which differ in their sensitivity to cracking, revealing a strong link mainly between pectin metabolism-related genes and cracking-phenotypes. Integrated metabolomic and transcriptomic profiling uncovered genotypic- and tissue-specific metabolic pathways, including tricarboxylic acid cycle, cell enlargement, lipid and ethanol biosynthesis, and plant defense that putatively are involved in fruit cracking. Based on these results, a model which describes the skin and flesh metabolic reprogramming during water-induced fruit cracking in the susceptible 'Early Bigi' cultivar is presented. Τhis study can help to explore novel candidate genes and metabolic pathways for cracking tolerance in sweet cherry.

9.
Physiol Plant ; 173(4): 1643-1656, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34537965

ABSTRACT

Salinity is a serious constraint that reduces olive crop productivity. Here, we defined metabolite and gene expression changes in various tissues of olive trees (cv. "Chondrolia Chalkidikis") exposed to 75 mM NaCl for 45 days. Results showed that salinity induced foliar symptoms and impaired growth and photosynthetic parameters. The content of Na+ and Cl- in roots, xylem, phloem and leaves increased, although the Na+ levels in old leaves and Cl- in young leaves remained unaffected. Mannitol was accumulated in roots and old leaves challenged by salinity. NaCl-treated trees have a decreased TCA-associated metabolites, such as citric and malic acid, as well as changes in phenylpropanoid-associated metabolites (i.e., pinoresinol and vanillic acid) and genes (OePLRTp2 and OeCA4H). Salt treatment resulted in hydroxyl-decarboxylmethyl eleuropein aglycone accumulation and OeGTF up-regulation in new leaves, possibly suggesting that oleuropein metabolism was modified by NaCl. Tyrosine metabolism, particularly verbascoside levels and OePPO and OehisC expressions, was modulated by salinity. Both genes (e.g., OeAtF3H and OeFNSII) and metabolites (e.g., apigenin and luteolin) involved in flavonoid biosynthesis were induced in old leaves exposed to NaCl. Based on these data, we constructed an interaction scheme of changes in metabolites and transcripts across olive tissues upon salinity. Particularly, several metabolites involved in carbohydrate metabolism were reduced in roots, while many sugars, carbohydrates and flavonoids were increased in leaves. This study provided a framework for better understanding the possible mechanisms that govern the tissue-specific response of olive tree to salinity stress, with insights into molecules that can be used for olive crop improvement projects.


Subject(s)
Olea , Metabolic Networks and Pathways , Plant Leaves , Plant Roots , Salinity , Sodium Chloride/pharmacology , Stress, Physiological
10.
Int J Mol Sci ; 22(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071656

ABSTRACT

The olive tree (Olea europaea L. subsp. europaea) is the most important perennial crop in the Mediterranean region, producing table olives and oil, both appreciated for their nutraceutical value. Although olive oil quality traits have been extensively studied, much less attention has been paid to olive drupe. Olive drupe ripening is an extremely complex process involving numerous physiological and molecular changes that are unique in this fruit crop species. This review underlines the contribution of "-omics" techniques and of the recent advances in bioinformatics and analytical tools, notably next-generation sequencing and mass spectrometry, for the characterization of the olive ripening syndrome. The usage of high-dimensional datasets, such as transcriptomics, proteomics, and metabolomics, will provide a systematical description of the molecular-specific processes regulating olive fruit development and ripening. However, the incomplete sequence of the O. europaea L. reference genome has largely hampered the utilization of omics tools towards olive drupe research. Due to this disadvantage, the most reported -omics studies on fruit trees concern metabolomics and only a few transcriptomics and proteomics. In this review, up-to-date applications of -omics technologies towards olive drupe biology are addressed, and future perspectives in olive fruit research are highlighted.


Subject(s)
Fruit/metabolism , Genomics , Metabolomics , Olea , Computational Biology , Fruit/chemistry , Genome, Plant , High-Throughput Nucleotide Sequencing , Olea/chemistry , Olea/genetics , Olea/metabolism , Proteome , Proteomics , Transcriptome
11.
Mol Biol Rep ; 48(5): 4441-4448, 2021 May.
Article in English | MEDLINE | ID: mdl-34100152

ABSTRACT

There is a persistent interest in innovative and multifunctional ingredients in biology research. With regards to this, natural sources have an important role due to their multiple benefits. Thus, this study aims to present the pleiotropic activity of Prunus avium L. extract on human primary fibroblasts for proving its efficacy in dermis-related processes. We focused on the safety and efficacy assessments based on cytotoxicity and gene expression analysis under oxidative stress. Specifically, Prunus avium L. extract was proved non-cytotoxic in human fibroblasts. The gene expression analysis unveiled that this extract has in vitro protective properties on human dermal fibroblasts under oxidative stress related to antioxidant activity, anti-inflammatory response, cell proliferation and cell- aging. Our study demonstrated for the very first time that the Prunus avium L. extract is a multifunctional ingredient as it mediates several human dermis-related in vitro processes highlighting its potential to be used as an active ingredient in skin care products.


Subject(s)
Antioxidants/adverse effects , Fibroblasts/metabolism , Fruit/chemistry , Oxidative Stress/drug effects , Plant Extracts/adverse effects , Prunus avium/chemistry , Skin/cytology , Cell Line , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cellular Senescence/drug effects , Cellular Senescence/genetics , Fibroblasts/drug effects , Gene Expression/drug effects , Humans , Hydrogen Peroxide/pharmacology , Oxidative Stress/genetics , Skin Care/methods
12.
Front Nutr ; 8: 695061, 2021.
Article in English | MEDLINE | ID: mdl-34179064

ABSTRACT

The aim of the present study was to investigate the impact of exogenous melatonin (0. 5 mM) application through pre-harvest foliar spray and postharvest immersion, alone or in combination, on ripening parameters of sweet cherry (cv. Ferrovia) fruit and their relationship with bioactive compounds and gene expression at harvest as well after cold storage (0°C) for 12 days and subsequent room temperature (20°C) exposure for 8 h. Although several ripening traits were not influenced by melatonin, the combining pre- and post-harvest treatments delayed fruit softening at post-cold period. Preharvest spray with melatonin depressed fruit respiration at time of harvest while all applied treatments induced respiratory activity following cold, indicating that this anti-ripening action of melatonin is reversed by cold. Several genes related to the tricarboxylic acid cycle, such as PaFUM, PaOGDH, PaIDH, and PaPDHA1 were upregulated in fruit exposed to melatonin, particularly following combined pre- and post-harvest application. The accumulation of phenolic compounds, such as neochlorogenic acid, chlorogenic acid, epicatechin, procyanidin B1, procyanidin B2+B4, cyanidin-3-O-galactoside, and cyanidin-3-O-rutinoside along with the expression of several genes involved in phenols biosynthesis, such as PaSK, PaPAL, Pa4CL, PaC4H, and PaFNR were at higher levels in melatonin-treated cherries at harvest and after cold exposure, the highest effects being observed in fruits subjected to both pre- and post-harvest treatments. This study provides a comprehensive understanding of melatonin-responsive ripening framework at different melatonin application conditions and sweet cherry stages, thereby helps to understand the action of this molecule in fruit physiology.

13.
Plant Physiol Biochem ; 166: 270-277, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34130037

ABSTRACT

The benefits of silicon against abiotic stress in different annual plant species have been described in many studies, however the regulation of ripening of fruit tree crops by silicon remains largely uncharacterized. Therefore, the present study aimed to explore the impact of foliar silicon application in the apple (cv. 'Fuji') fruit ripening traits along with the effect of silicon in the nutrient and metabolic changes in the fully expanded leaves, annual shoots, fruit outer pericarp (peel) and fruit mesocarp (skin) tissues. Data indicated that fruit firmness and apple peel color attributes, such as redness (a*) and percentage of red-blushed surface were induced by silicon application. Moreover, several fruit ripening traits, such as titratable acidity, soluble solid content and respiration rate were unaffected by silicon. Endogenous silicon level in leaves shoots and peel tissues were increased by exogenously applied silicon while several elements (i.e., P, Mg, Mn, Fe and Cu) were altered in the tested tissues that exposed to silicon. In addition, silicon increased the accumulation of total phenolic and total anthocyanin compounds in the various apple tissues. The level of various primary metabolites including sorbitol, fructose, maltose cellobiose, malic acid, phosphoric acid and gluconic acid was also notably affected by silicon in a tissue-specific manner. Overall, this study provides a valuable resource for future research, aiming in the elucidation of the role of silicon in fruit tree physiology.


Subject(s)
Malus , Anthocyanins , Fruit/chemistry , Phenols/analysis , Silicon
14.
Food Chem ; 363: 130339, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34147896

ABSTRACT

Maturity is one of the most important factors associated with the quality of olive products, however the molecular events underlying olive drupe development remain poorly characterized. Using proteomic and metabolomic approaches, this study investigated the changes in the olive drupes (cv. Chondrolia Chalkidikis) across six developmental stages (S1-S6) that characterize the dynamics of fruit growth and color. Primary metabolites, including carbohydrates and organic acids (i.e., xylose, malic acid), showed significant accumulation in the black maturation stage. Temporal changes in various secondary metabolites (e.g., oleuropein, oleacin and tyrosol) were also observed. Proteins involved in oxidation-reduction (i.e., LOX1/5), carbohydrate metabolism (i.e., GLUA, PG) and photosynthesis (i.e., chlorophyll a-b binding proteins) significantly altered in the turning black compared to the green mature stage. By providing the first proteometabolomic study of olive drupe development, this investigation offers a novel framework for further studies on this economically relevant crop.


Subject(s)
Olea , Chlorophyll A , Fruit , Metabolomics , Proteomics
15.
Front Plant Sci ; 12: 644255, 2021.
Article in English | MEDLINE | ID: mdl-33777080

ABSTRACT

Gray mold caused by the necrotrophic fungus Botrytis cinerea is one of the major postharvest diseases of apple fruit. The exogenous application of 1-methylcyclopropene (1-MCP) and gaseous ozone (O 3) is commonly used to ensure postharvest fruit quality. However, the effect of these treatments on the susceptibility of apple fruit to postharvest pathogens remains largely unknown. Herein, the effect of O 3 and 1-MCP treatments on the development of gray mold on apple fruit (cv. "Granny Smith") was investigated. Artificially inoculated apple fruits, treated or not with 1-MCP, were subjected for 2 months to cold storage [0°C, relative humidity (RH) 95%] either in an O3-enriched atmosphere or in a conventional cold chamber. Minor differences between 1-MCP-treated and control fruits were found in terms of disease expression; however, exposure to ozone resulted in a decrease of disease severity by more than 50% compared with 1-MCP-treated and untreated fruits. Proteomic analysis was conducted to determine proteome changes in the mesocarp tissue of control and 1-MCP- or O3-treated fruits in the absence or in the presence of inoculation with B. cinerea. In the non-inoculated fruits, 26 proteins were affected by 1-MCP, while 51 proteins were altered by ozone. Dynamic changes in fruit proteome were also observed in response to B. cinerea. In O3-treated fruits, a significant number of disease/defense-related proteins were increased in comparison with control fruit. Among these proteins, higher accumulation levels were observed for allergen, major allergen, ACC oxidase, putative NBS-LRR disease resistance protein, major latex protein (MLP)-like protein, or 2-Cys peroxiredoxin. In contrast, most of these proteins were down-accumulated in 1-MCP-treated fruits that were challenged with B. cinerea. These results suggest that ozone exposure may contribute to the reduction of gray mold in apple fruits, while 1-MCP was not effective in affecting this disease. This is the first study deciphering differential regulations of apple fruit proteome upon B. cinerea infection and postharvest storage treatments, underlying aspects of host response related to the gray mold disease.

16.
Food Chem ; 342: 128315, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33071194

ABSTRACT

The current study characterizes the physicochemical, sensory and bioactive compound traits of twenty-two sweet cherry accessions, namely breeding lines, landraces and modern cultivars, embodying the majority of Greek germplasm. The evaluated accessions differ in several quality traits including colour parameters and textural properties as well as sensory attributes, such as taste intensity and overall acceptance. Significant differences in primary metabolites, including fructose, glucose, sorbitol, malic acid were recorded among tested accessions. All genotypes were rich in polyphenols, primarily in quercetin-3,4-O-diglucoside, esculetin, rutin and neochlorogenic acid. An anthocyanins-related discrimination among accessions was also obtained based on cyanidin-3-O-rutinoside and peonidin glycosides content. Overall, the cultivars 'Tsolakeika' and 'Bakirtzeika' exhibited the higher consumer acceptance while the cultivars 'Vasiliadi' and 'Tragana Edessis-Naousis' and especially the breeding line 'TxAg33' contained high polyphenol levels. These results represent a valuable resource for future breeding efforts for sweet cherry cultivars with improved nutritional quality traits.


Subject(s)
Prunus avium/metabolism , Anthocyanins/metabolism , Color , Greece , Plant Breeding , Polyphenols/metabolism
17.
Plant Mol Biol ; 104(6): 597-614, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32909183

ABSTRACT

KEY MESSAGE: This work provides the first system-wide datasets concerning metabolic changes in calcium-treated fruits, which reveal that exogenously applied calcium may specifically reprogram sweet cherry development and ripening physiognomy. Calcium modulates a wide range of plant developmental processes; however, the regulation of fruit ripening by calcium remains largely uncharacterized. In this study, transcriptome, proteome and metabolome profiling was used to document the responses of sweet cherry fruit to external calcium application (0.5% CaCl2) at 15, 27 and 37 days after full blossom. Endogenous calcium loading in fruit across development following external calcium feeding was accompanied by a reduction in respiration rate. Calcium treatment strongly impaired water-induced fruit cracking tested by two different assays, and this effect depended on the fruit size, water temperature and light/dark conditions. Substantial changes in the levels of numerous polar/non-polar primary and secondary metabolites, including malic acid, glucose, cysteine, epicatechin and neochlorogenic acid were noticed in fruits exposed to calcium. At the onset of ripening, we identified various calcium-affected genes, including those involved in ubiquitin and cysteine signaling, that had not been associated previously with calcium function in fruit biology. Calcium specifically increased the abundance of a significant number of proteins that classified as oxidoreductases, transferases, hydrolases, lyases, and ligases. The overview of temporal changes in gene expression and corresponding protein abundance provided by interlinked analysis revealed that oxidative phosphorylation, hypersensitive response, DNA repair, stomata closure, biosynthesis of secondary metabolites, and proton-pump activity were mainly affected by calcium. This report provides the fullest characterization of expression patterns in calcium-responsive genes, proteins and metabolites currently available in fruit ripening and will serve as a blueprint for future biological endeavors.


Subject(s)
Calcium/pharmacology , Fruit/drug effects , Prunus avium/drug effects , Prunus avium/growth & development , Calcium Signaling , Datasets as Topic , Fruit/genetics , Fruit/growth & development , Gene Expression Regulation, Plant , Pigmentation , Plant Proteins , Proteome , Prunus avium/genetics , Prunus avium/metabolism , Transcriptome
18.
Plant Physiol Biochem ; 156: 291-303, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32987259

ABSTRACT

Ascorbate oxidase (AO, EC 1.10.3.3) is a copper-containing enzyme localized at the apoplast, where it catalyzes the oxidation of ascorbic acid (AA) to dehydroascorbic acid (DHA) via monodehydroascorbic acid (MDHA) intermediate. Despite it has been extensively studied, no biological roles have been definitively ascribed. To understand the role of AO in plant metabolism, fruit growth and physiology, we suppressed AO expression in melon (Cucumis melo L.) fruit. Reduction of AO activity increased AA content in melon fruit, which is the result of repression of AA oxidation and simultaneous induction of certain biosynthetic and recycling genes. As a consequence, ascorbate redox state was altered in the apoplast. Interestingly, transgenic melon fruit displayed increased ethylene production rate coincided with elevated levels of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO, EC 1.14.17.4) activity and gene expression, which might contribute to earlier ripening. Moreover, AO suppressed transgenic melon fruit exhibited a dramatic arrest in fruit growth, due to a simultaneous decrease in fruit cell size and in plasmalemma (PM) ATPase activity. All the above, support for the first time, the in vivo AO participation in the rapid fruit growth of Cucurbitaceae and further suggest an alternative route for AA increase in ripening fruit.


Subject(s)
Ascorbate Oxidase/genetics , Ascorbic Acid/analysis , Cucurbitaceae/genetics , Gene Silencing , Cucurbitaceae/growth & development , Fruit/enzymology , Fruit/physiology , Gene Expression Regulation, Plant , Plants, Genetically Modified/growth & development
19.
Hortic Res ; 7: 120, 2020.
Article in English | MEDLINE | ID: mdl-32821403

ABSTRACT

Apple (Malus domestica Borkh) is an important fruit crop cultivated in a broad range of environmental conditions. Apple fruit ripening is a physiological process, whose molecular regulatory network response to different environments is still not sufficiently investigated and this is particularly true of the peel tissue. In this study, the influence of environmental conditions associated with low (20 m) and high (750 m) altitude on peel tissue ripening was assessed by physiological measurements combined with metabolomic and proteomic analyses during apple fruit development and ripening. Although apple fruit ripening was itself not affected by the different environmental conditions, several key color parameters, such as redness and color index, were notably induced by high altitude. Consistent with this observation, increased levels of anthocyanin and other phenolic compounds, including cyanidin-3-O-galactoside, quercetin-3-O-rhamnoside, quercetin-3-O-rutinoside, and chlorogenic acid were identified in the peel of apple grown at high altitude. Moreover, the high-altitude environment was characterized by elevated abundance of various carbohydrates (e.g., arabinose, xylose, and sucrose) but decreased levels of glutamic acid and several related proteins, such as glycine hydroxymethyltransferase and glutamate-glyoxylate aminotransferase. Other processes affected by high altitude were the TCA cycle, the synthesis of oxidative/defense enzymes, and the accumulation of photosynthetic proteins. From the obtained data we were able to construct a metabolite-protein network depicting the impact of altitude on peel ripening. The combined analyses presented here provide new insights into physiological processes linking apple peel ripening with the prevailing environmental conditions.

20.
Sci Rep ; 10(1): 7807, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385387

ABSTRACT

Brown rot, caused by Monilinia spp., is a major peach disease worldwide. In this study, the response of peach cultivars Royal Glory (RG) and Rich Lady (RL) to infection by Monilinia fructicola or Monilinia laxa, was characterized. Phenotypic data, after artificial inoculations, revealed that 'RL' was relatively susceptible whereas 'RG' was moderately resistant to Monilinia spp. Comparative proteomic analysis identified mesocarp proteins of the 2 cultivars whose accumulation were altered by the 2 Monilinia species. Functional analysis indicated that pathogen-affected proteins in 'RG' were mainly involved in energy and metabolism, while, differentially accumulated proteins by the pathogen presence in 'RL' were involved in disease/defense and metabolism. A higher number of proteins was differentiated in 'RG' fruit compared to 'RL'. Upon Monilinia spp. infection, various proteins were-down accumulated in 'RL' fruit. Protein identification by mass spectrometric analysis revealed that several defense-related proteins including thaumatin, formate dehydrogenase, S-formylglutathione hydrolase, CBS domain-containing protein, HSP70, and glutathione S-transferase were up-accumulated in 'RG' fruit following inoculation. The expression profile of selected defense-related genes, such as major latex allergen, 1-aminocyclopropane-1-carboxylate deaminase and UDP-glycoltransferase was assessed by RT-PCR. This is the first study deciphering differential regulations of peach fruit proteome upon Monilinia infection elucidating resistance responses.


Subject(s)
Disease Resistance/genetics , Fruit/genetics , Plant Proteins/genetics , Prunus persica/genetics , Ascomycota/pathogenicity , Fruit/growth & development , Fruit/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Proteomics/methods , Prunus persica/growth & development , Prunus persica/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...