Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 799: 137102, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36736533

ABSTRACT

Subthreshold somatosensory stimulation with pink noise has been shown to attenuate postural sway better than stimulation with white noise. This might be due to the different frequency structures of the noise signals. However, their effects on the underlying somatosensory feedback pathway are still unknown. Thus, we aimed to determine whether pink noise enhances the somatosensory feedback pathway more effectively than other noises with different frequency structures, such as white and red noises. Sixteen young adults stood quietly for 65 s under four stimulation conditions: no stimulation and stimulations with white-, pink-, and red-noise-like signals. Based on a stabilogram-diffusion analysis, we calculated the long-term diffusion coefficient and scaling exponent in the radial direction to evaluate the effects of these noise signals on their somatosensory feedback control. The root mean square (CoPRMS) and mean velocity of the foot center of pressure were also computed to assess the amount of postural sway. The results showed that the stimulation condition had a significant effect on the scaling exponent, with the value under the pink-noise-like signal significantly lower than that under the no-stimulation condition. We also found that among the participants, the percentage of reduction in CoPRMS by the pink-noise-like signal was positively correlated with the CoPRMS value under the no-stimulation condition. Altogether, the somatosensory feedback control for balancing for quiet standing posture was improved by pink noise, and its effect on the variability of postural sway correlated with inherent postural sway variability.


Subject(s)
Postural Balance , Posture , Young Adult , Humans , Feedback , Postural Balance/physiology , Posture/physiology , Noise , Electric Stimulation
2.
Nanoscale Adv ; 2(8): 3202-3208, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-36134287

ABSTRACT

Fabrication of a two-dimensional covalent network of honeycomb nanosheets comprising small 1,3,5-triamino benzene and benzene-1,3,5-tricarboxaldehyde aromatic building blocks was conducted on Au(111) in a pH-controlled aqueous solution. In situ scanning tunneling microscopy revealed a large defect-free and homogeneous honeycomb π-conjugated nanosheet at the Au(111)/liquid interface. An electrochemical potential dependence indicated that the nanosheets were the result of thermodynamic self-assembly based not only on the reaction equilibrium but also on the adsorption (partition) equilibrium, which was controlled by the building block surface coverage as a function of electrode potential.

3.
J Nanosci Nanotechnol ; 14(3): 2211-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24745214

ABSTRACT

Two-dimensional pi-conjugated metal-porphyrin covalent organic frameworks were produced in aqueous solution on an iodine-modified Au(111) surface by "on-site" azomethine coupling of Fe(III)-5,10,15,20-tetrakis(4-aminophenyl)porphyrin (FeTAPP) with terephthal dicarboxaldehyde and investigated in detail using in-situ scanning tunneling microscopy. Mixed covalent organic porphyrin frameworks consisting of FeTAPP and metal-free TAPP (H2TAPP) were prepared through simultaneous adsorption in a mixed solution as well as partial replacement of FeTAPP by H2TAPP in an as-prepared metal-porphyrin framework. In the mixed framework, the relative distribution of FeTAPP to H2TAPP was not random and revealed a preference for homo-connection rather than heteroconnection. The construction of substrate-supported, pi-conjugated covalent frameworks from multiple building blocks, including metal centers, will be of significant utility in the design of functional molecular nanoarchitectures.

4.
Langmuir ; 28(39): 13844-51, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22954335

ABSTRACT

Two-dimensional (2D) arrays of π-conjugated aromatic polymers produced by surface-selective Schiff base coupling reactions between an aromatic diamine and an aromatic dialdehyde were investigated in detail using in situ scanning tunneling microscopy. Surface-selective coupling was achieved for almost all diamine/dialdehyde combinations attempted, although several combinations did not proceed even in homogeneous aqueous alkaline solution. Most of the combinations of an aromatic diamine and a dialdehyde, except the combinations of 4,4'-azodianiline with mono/bithiophenedicarboxaldehyde, formed highly ordered π-conjugated polymer arrays on an iodine-modified Au(111) surface in aqueous solution at a suitable pH. The simplest polymer of the various combinations tested, obtained from the combination of 1,4-diaminobenzene with terephthaldicarboxaldehyde, gave a 2D array consisting of linearly connected benzene units. Poly(azomethine) adlayers caused a positive shift in the electrochemical potential of the butterfly shaped oxidative adsorption and reductive desorption of iodine. The acceleration of the reductive desorption of iodine suggests the existence of a weak interaction between the polymer layer and iodine. Not only the first polymer adlayers but also partially adsorbed secondary adlayers with "on-top" epitaxial behavior were frequently observed for all polymer systems. The alignment of the polymer chains in the adlayers possessed a certain regularity in terms of a regular interval between polymer chains because of repulsive interpolymer interactions.


Subject(s)
Aldehydes/chemistry , Azo Compounds/chemistry , Diamines/chemistry , Polymers/chemistry , Thiosemicarbazones/chemistry , Adsorption , Gold/chemistry , Microscopy, Scanning Tunneling , Oxidation-Reduction , Polymerization , Surface Properties
5.
Chem Commun (Camb) ; 48(25): 3103-5, 2012 Mar 25.
Article in English | MEDLINE | ID: mdl-22344394

ABSTRACT

Colored Schiff-base π-conjugated polymer thin films from different combinations of aromatic amines and aldehydes have been prepared. The polymer films spontaneously form under ambient conditions by simple immersion of graphite substrates in an aqueous solution containing the monomer units. Chemical liquid deposition is achieved by delicate control of solution pH, which allows surface selective polymerization and deposition but inhibits reaction in the aqueous phase.

6.
ACS Nano ; 5(5): 3923-9, 2011 May 24.
Article in English | MEDLINE | ID: mdl-21480643

ABSTRACT

The pursuit of methods for design and preparation of robust nanoarchitectonic systems with integrated functionality through bottom-up methodologies remains a driving force in molecular nanotechnology. Through the use of π-conjugated covalent bonds, we demonstrate a general substrate-mediated, soft solution methodology for the preparation of extended π-conjugated polymeric nanoarchitectures in low-dimensions. Based on thermodynamic control over equilibrium polymerization at the solid-liquid interface whereby aromatic building blocks spontaneously and selectively link, close-packed arrays composed of one-dimensional (1-D) aromatic polymers and two-dimensional (2-D) macromolecular frameworks have been prepared and characterized by in situ scanning tunneling microscopy. This methodology eliminates the necessity for severe conditions and sophisticated equipment common to most current fabrication techniques and imparts almost infinite possibilities for the preparation of robust materials with designer molecular architectures.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Water/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Solutions , Surface Properties , Thermodynamics
7.
Materials (Basel) ; 3(8): 4252-4276, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-28883328

ABSTRACT

Since the invention of scanning tunneling microscopy (STM), 2D supramolecular architectures have been observed under various experimental conditions. The construction of these architectures arises from the balance between interactions at the medium-solid interface. This review summarizes molecular motion observed in 2D-supramolecular structures on surfaces using nanospace resolution STM. The observation of molecular motion on surfaces provides a visual understanding of intermolecular interactions, which are the major driving force behind supramolecular arrangement.

SELECTION OF CITATIONS
SEARCH DETAIL
...