Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Global Biogeochem Cycles ; 35(6): e2021GB007000, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34219915

ABSTRACT

We study the drivers behind the global atmospheric methane (CH4) increase observed after 2006. Candidate emission and sink scenarios are constructed based on proposed hypotheses in the literature. These scenarios are simulated in the TM5 tracer transport model for 1984-2016 to produce three-dimensional fields of CH4 and δ 13C-CH4, which are compared with observations to test the competing hypotheses in the literature in one common model framework. We find that the fossil fuel (FF) CH4 emission trend from the Emissions Database for Global Atmospheric Research 4.3.2 inventory does not agree with observed δ 13C-CH4. Increased FF CH4 emissions are unlikely to be the dominant driver for the post-2006 global CH4 increase despite the possibility for a small FF emission increase. We also find that a significant decrease in the abundance of hydroxyl radicals (OH) cannot explain the post-2006 global CH4 increase since it does not track the observed decrease in global mean δ 13C-CH4. Different CH4 sinks have different fractionation factors for δ 13C-CH4, thus we can investigate the uncertainty introduced by the reaction of CH4 with tropospheric chlorine (Cl), a CH4 sink whose abundance, spatial distribution, and temporal changes remain uncertain. Our results show that including or excluding tropospheric Cl as a 13 Tg/year CH4 sink in our model changes the magnitude of estimated fossil emissions by ∼20%. We also found that by using different wetland emissions based on a static versus a dynamic wetland area map, the partitioning between FF and microbial sources differs by 20 Tg/year, ∼12% of estimated fossil emissions.

2.
Science ; 341(6150): 1085-9, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23929948

ABSTRACT

Seasonal variations of atmospheric carbon dioxide (CO2) in the Northern Hemisphere have increased since the 1950s, but sparse observations have prevented a clear assessment of the patterns of long-term change and the underlying mechanisms. We compare recent aircraft-based observations of CO2 above the North Pacific and Arctic Oceans to earlier data from 1958 to 1961 and find that the seasonal amplitude at altitudes of 3 to 6 km increased by 50% for 45° to 90°N but by less than 25% for 10° to 45°N. An increase of 30 to 60% in the seasonal exchange of CO2 by northern extratropical land ecosystems, focused on boreal forests, is implicated, substantially more than simulated by current land ecosystem models. The observations appear to signal large ecological changes in northern forests and a major shift in the global carbon cycle.


Subject(s)
Atmosphere/chemistry , Carbon Cycle , Carbon Dioxide/chemistry , Ecosystem , Trees , Arctic Regions , Oceans and Seas , Seasons
3.
Nature ; 488(7409): 70-2, 2012 Aug 02.
Article in English | MEDLINE | ID: mdl-22859203

ABSTRACT

One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/analysis , Carbon Sequestration , Climate Change/statistics & numerical data , Seawater/chemistry , Carbon/analysis , Carbon Dioxide/history , History, 20th Century , History, 21st Century , Human Activities , Models, Theoretical , Oceans and Seas , Time Factors , Uncertainty
4.
Science ; 290(5495): 1342-7, 2000 Nov 17.
Article in English | MEDLINE | ID: mdl-11082059

ABSTRACT

We have applied an inverse model to 20 years of atmospheric carbon dioxide measurements to infer yearly changes in the regional carbon balance of oceans and continents. The model indicates that global terrestrial carbon fluxes were approximately twice as variable as ocean fluxes between 1980 and 1998. Tropical land ecosystems contributed most of the interannual changes in Earth's carbon balance over the 1980s, whereas northern mid- and high-latitude land ecosystems dominated from 1990 to 1995. Strongly enhanced uptake of carbon was found over North America during the 1992-1993 period compared to 1989-1990.

5.
Science ; 287(5462): 2467-70, 2000 Mar 31.
Article in English | MEDLINE | ID: mdl-10741962

ABSTRACT

Recent time-series measurements of atmospheric O2 show that the land biosphere and world oceans annually sequestered 1.4 +/- 0.8 and 2.0 +/- 0.6 gigatons of carbon, respectively, between mid-1991 and mid-1997. The rapid storage of carbon by the land biosphere from 1991 to 1997 contrasts with the 1980s, when the land biosphere was approximately neutral. Comparison with measurements of delta13CO2 implies an isotopic flux of 89 +/- 21 gigatons of carbon per mil per year, in agreement with model- and inventory-based estimates of this flux. Both the delta13C and the O2 data show significant interannual variability in carbon storage over the period of record. The general agreement of the independent estimates from O2 and delta13C is a robust signal of variable carbon uptake by both the land biosphere and the oceans.


Subject(s)
Atmosphere , Carbon/analysis , Carbon/metabolism , Ecosystem , Oxygen/analysis , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Carbon Isotopes , Nitrogen/analysis , Oceans and Seas , Oxygen Consumption , Photosynthesis
6.
Science ; 269(5227): 1098-102, 1995 Aug 25.
Article in English | MEDLINE | ID: mdl-17755534

ABSTRACT

Measurements of the concentrations and carbon-13/carbon-12 isotope ratios of atmospheric carbon dioxide can be used to quantify the net removal of carbon dioxide from the atmosphere by the oceans and terrestrial plants. A study of weekly samples from a global network of 43 sites defined the latitudinal and temporal patterns of the two carbon sinks. A strong terrestrial biospheric sink was found in the temperate latitudes of the Northern Hemisphere in 1992 and 1993, the magnitude of which is roughly half that of the global fossil fuel burning emissions for those years. The challenge now is to identify those processes that would cause the terrestrial biosphere to absorb carbon dioxide in such large quantities.

7.
Science ; 263(5153): 1587-90, 1994 Mar 18.
Article in English | MEDLINE | ID: mdl-17744786

ABSTRACT

Measurements of carbon monoxide (CO) in air samples collected from 27 locations between 71 degrees N and 41 degrees S show that atmospheric levels of this gas have decreased worldwide over the past 2 to 5 years. During this period, CO decreased at nearly a constant rate in the high northern latitudes. In contrast, in the tropics an abrupt decrease occurred beginning at the end of 1991. In the Northern Hemisphere, CO decreased at a spatially and temporally averaged rate of 7.3 (+/-0.9) parts per billion per year (6.1 percent per year) from June 1990 to June 1993, whereas in the Southern Hemisphere, CO decreased 4.2 (+/-0.5) parts per billion per year (7.0 percent per year). This recent change is opposite a long-term trend of a 1 to 2 percent per year increase inferred from measurements made in the Northern Hemisphere during the past 30 years.

8.
Science ; 247(4949): 1431-8, 1990 Mar 23.
Article in English | MEDLINE | ID: mdl-17791210

ABSTRACT

Observed atmospheric concentrations of CO(2) and data on the partial pressures of CO(2) in surface ocean waters are combined to identify globally significant sources and sinks of CO(2). The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO(2) are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO(2) in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO(2). Therefore, a large amount of the CO(2) is apparently absorbed on the continents by terrestrial ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...