Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Res Sq ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38883776

ABSTRACT

Background: Inflammation is a central process of many neurological diseases, and a growing number of studies suggest that non-brain-resident immune cells may contribute to this neuroinflammation. However, the unique contributions of specific immune cell subsets to neuroinflammation are presently unknown, and it is unclear how communication between brain-resident and non-resident immune cells underlies peripheral immune cell involvement in neuroinflammation. Methods: In this study, we employed the well-established model of lipopolysaccharide (LPS)-induced neuroinflammation and captured brain-resident and non-resident immune cells from the brain and its vasculature by magnetically enriching cell suspensions from the non-perfused brain for CD45 + cells. Then, we identified immune subtype-specific neuroinflammatory processes using single-cell genomics and predicted the crosstalk between immune cell subtypes by analyzing the simultaneous expression of ligands and receptors. Results: We observed a greater abundance of peripheral phagocytes associated with the brain in this model of neuroinflammation, and report that these professional phagocytes activated similar transcriptional profiles to microglia during LPS-induced neuroinflammation. And, we observed that the probable crosstalk between microglia and peripheral phagocytes was activated in this model while homotypic microglial communication was likely to be decreased. Conclusions: Our novel findings reveal that microglia signaling to non-brain-resident peripheral phagocytes is preferentially triggered by peripheral inflammation, which is associated with brain infiltration of peripheral cells. Overall, our study supports the involvement of peripheral immune cells in neuroinflammation and suggests several possible molecular signaling pathways between microglia and peripheral cells that may facilitate central-peripheral crosstalk during inflammation. Examining these molecular mediators in human disease and other rodent models may reveal novel targets that modify brain health, especially in comorbidities characterized by peripheral inflammation.

2.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38558966

ABSTRACT

Progranulin is a holoprotein that is critical for successful aging, and insufficient levels of progranulin are associated with increased risk for developing age-related neurodegenerative diseases like AD, PD, and FTD. Symptoms can vary widely, but a uniting feature among these different neurodegenerative diseases is prodromal peripheral immune cell phenotypes. However, there remains considerable gaps in the understanding of the function(s) of progranulin in immune cells, and recent work has identified a novel target candidate called GPNMB. We addressed this gap by investigating the peritoneal macrophages of 5-6-month-old Grn KO mice, and we discovered that GPNMB is actively increased as a result of insufficient progranulin and that MITF, a transcription factor, is also dysregulated in progranulin-deficient macrophages. These findings highlight the importance of early-stage disease mechanism(s) in peripheral cell populations that may lead to viable treatment strategies to delay disease progression at an early, prodromal timepoint and extend therapeutic windows.

3.
Res Sq ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38559083

ABSTRACT

Parkinson's disease (PD) is characterized by a decades-long prodrome, consisting of a collection of non-motor symptoms that emerges prior to the motor manifestation of the disease. Of these non-motor symptoms, gastrointestinal dysfunction and deficits attributed to central norepinephrine (NE) loss, including mood changes and sleep disturbances, are frequent in the PD population and emerge early in the disease. Evidence is mounting that injury and inflammation in the gut and locus coeruleus (LC), respectively, underlie these symptoms, and the injury of these systems is central to the progression of PD. In this study, we generate a novel two-hit mouse model that captures both features, using dextran sulfate sodium (DSS) to induce gut inflammation and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to lesion the LC. We first confirmed the specificity of DSP-4 for central NE using neurochemical methods and fluorescence light-sheet microscopy of cleared tissue, and established that DSS-induced outcomes in the periphery, including weight loss, gross indices of gut injury and systemic inflammation, the loss of tight junction proteins in the colonic epithelium, and markers of colonic inflammation, were unaffected with DSP-4 pre-administration. We then measured alterations in neuroimmune gene expression in the ventral midbrain in response to DSS treatment alone as well as the extent to which prior LC injury modified this response. In this two-hit model we observed that DSS-induced colitis activates the expression of key cytokines and chemokines in the ventral midbrain only in the presence of LC injury and the typical DSS-associated neuroimmune is blunted by pre-LC lesioning with DSP-4. In all, this study supports the growing appreciation for the LC as neuroprotective against inflammation-induced brain injury and draws attention to the potential for NEergic interventions to exert disease-modifying effects under conditions where peripheral inflammation may compromise ventral midbrain dopaminergic neurons and increase the risk for development of PD.

4.
bioRxiv ; 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38562842

ABSTRACT

Research into the disequilibrium of microglial phenotypes has become an area of intense focus in neurodegenerative disease as a potential mechanism that contributes to chronic neuroinflammation and neuronal loss in Parkinson's disease (PD). There is growing evidence that neuroinflammation accompanies and may promote progression of alpha-synuclein (Asyn)-induced nigral dopaminergic (DA) degeneration. From a therapeutic perspective, development of immunomodulatory strategies that dampen overproduction of pro-inflammatory cytokines from chronically activated immune cells and induce a pro-phagocytic phenotype is expected to promote Asyn removal and protect vulnerable neurons. Cannabinoid receptor-2 (CB2) is highly expressed on activated microglia and peripheral immune cells, is upregulated in the substantia nigra of individuals with PD and in mouse models of nigral degeneration. Furthermore, modulation of CB2 protects against rotenone-induced nigral degeneration; however, CB2 has not been pharmacologically and selectively targeted in an Asyn model of PD. Here, we report that 7 weeks of peripheral administration of CB2 inverse agonist SMM-189 reduced phosphorylated (pSer129) alpha-synuclein in the substantia nigra compared to vehicle treatment. Additionally, SMM-189 delayed Asyn-induced immune cell infiltration into the brain as determined by flow cytometry, increased CD68 protein expression, and elevated wound-healing-immune-mediator gene expression. Additionally, peripheral immune cells increased wound-healing non-classical monocytes and decreased pro-inflammatory classical monocytes. In vitro analysis of RAW264.7 macrophages treated with lipopolysaccharide (LPS) and SMM-189 revealed increased phagocytosis as measured by the uptake of fluorescence of pHrodo E. coli bioparticles. Together, results suggest that targeting CB2 with SMM-189 skews immune cell function toward a phagocytic phenotype and reduces toxic aggregated species of Asyn. Our novel findings demonstrate that CB2 may be a target to modulate inflammatory and immune responses in proteinopathies.

5.
Neurobiol Dis ; 196: 106511, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670277

ABSTRACT

Emerging evidence indicates that high-fat, high carbohydrate diet (HFHC) impacts central pathological features of Alzheimer's disease (AD) across both human incidences and animal models. However, the mechanisms underlying this association are poorly understood. Here, we identify compartment-specific metabolic and inflammatory dysregulations that are induced by HFHC diet in the 5xFAD mouse model of AD pathology. We observe that both male and female 5xFAD mice display exacerbated adiposity, cholesterolemia, and dysregulated insulin signaling. Independent of biological sex, HFHC diet also resulted in altered inflammatory cytokine profiles across the gastrointestinal, circulating, and central nervous systems (CNS) compartments demonstrating region-specific impacts of metabolic inflammation. Interestingly, inhibiting the inflammatory cytokine, soluble tumor necrosis factor (TNF) with the brain-permeant soluble TNF inhibitor XPro1595 was able to restore aspects of HFHC-induced metabolic inflammation, but only in male mice. Targeted transcriptomics of CNS regions revealed that inhibition of soluble TNF was sufficient to alter expression of hippocampal and cortical genes associated with beneficial immune and metabolic responses. Collectively, these results suggest that HFHC diet impairs metabolic and inflammatory pathways in an AD-relevant genotype and that soluble TNF has sex-dependent roles in modulating these pathways across anatomical compartments. Modulation of energy homeostasis and inflammation may provide new therapeutic avenues for AD.


Subject(s)
Alzheimer Disease , Diet, High-Fat , Disease Models, Animal , Mice, Transgenic , Tumor Necrosis Factor-alpha , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Mice , Male , Female , Tumor Necrosis Factor-alpha/metabolism , Diet, High-Fat/adverse effects , Signal Transduction/physiology , Sex Characteristics , Inflammation/metabolism
6.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612454

ABSTRACT

Synucleinopathies are a group of central nervous system pathologies that are characterized by the intracellular accumulation of misfolded and aggregated α-synuclein in proteinaceous depositions known as Lewy Bodies (LBs). The transition of α-synuclein from its physiological to pathological form has been associated with several post-translational modifications such as phosphorylation and an increasing degree of insolubility, which also correlate with disease progression in post-mortem specimens from human patients. Neuronal expression of α-synuclein in model organisms, including Drosophila melanogaster, has been a typical approach employed to study its physiological effects. Biochemical analysis of α-synuclein solubility via high-speed ultracentrifugation with buffers of increasing detergent strength offers a potent method for identification of α-synuclein biochemical properties and the associated pathology stage. Unfortunately, the development of a robust and reproducible method for the evaluation of human α-synuclein solubility isolated from Drosophila tissues has remained elusive. Here, we tested different detergents for their ability to solubilize human α-synuclein carrying the pathological mutation A53T from the brains of aged flies. We also assessed the effect of sonication on the solubility of human α-synuclein and optimized a protocol to discriminate the relative amounts of soluble/insoluble human α-synuclein from dopaminergic neurons of the Drosophila brain. Our data established that, using a 5% SDS buffer, the three-step protocol separates cytosolic soluble, detergent-soluble and insoluble proteins in three sequential fractions according to their chemical properties. This protocol shows that sonication breaks down α-synuclein insoluble complexes from the fly brain, making them soluble in the SDS buffer and thus enriching the detergent-soluble fraction of the protocol.


Subject(s)
Synucleinopathies , Aged , Animals , Humans , alpha-Synuclein , Detergents , Drosophila melanogaster
7.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464096

ABSTRACT

Emerging evidence indicates that high-fat, high carbohydrate diet (HFHC) impacts central pathological features of Alzheimer's disease (AD) across both human incidences and animal models. However, the mechanisms underlying this association are poorly understood. Here, we identify compartment-specific metabolic and inflammatory dysregulations that are induced by HFHC diet in the 5xFAD mouse model of AD pathology. We observe that both male and female 5xFAD mice display exacerbated adiposity, cholesterolemia, and dysregulated insulin signaling. Independent of biological sex, HFHC diet also resulted in altered inflammatory cytokine profiles across the gastrointestinal, circulating, and central nervous systems (CNS) compartments demonstrating region-specific impacts of metabolic inflammation. In male mice, we note that HFHC triggered increases in amyloid beta, an observation not seen in female mice. Interestingly, inhibiting the inflammatory cytokine, soluble tumor necrosis factor (TNF) with the brain-permeant soluble TNF inhibitor XPro1595 was able to restore aspects of HFHC-induced metabolic inflammation, but only in male mice. Targeted transcriptomics of CNS regions revealed that inhibition of soluble TNF was sufficient to alter expression of hippocampal and cortical genes associated with beneficial immune and metabolic responses. Collectively, these results suggest that HFHC diet impairs metabolic and inflammatory pathways in an AD-relevant genotype and that soluble TNF has sex-dependent roles in modulating these pathways across anatomical compartments. Modulation of energy homeostasis and inflammation may provide new therapeutic avenues for AD.

8.
bioRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38405709

ABSTRACT

Parkinson's disease (PD) is characterized by a decades-long prodrome, consisting of a collection of non-motor symptoms that emerges prior to the motor manifestation of the disease. Of these non-motor symptoms, gastrointestinal dysfunction and deficits attributed to central norepinephrine (NE) loss, including mood changes and sleep disturbances, are frequent in the PD population and emerge early in the disease. Evidence is mounting that injury and inflammation in the gut and locus coeruleus (LC), respectively, underlie these symptoms, and the injury of these systems is central to the progression of PD. In this study, we generate a novel two-hit mouse model that captures both features, using dextran sulfate sodium (DSS) to induce gut inflammation and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to lesion the LC. We first confirmed the specificity of DSP-4 for central NE using neurochemical methods and fluorescence light-sheet microscopy of cleared tissue, and established that DSS-induced outcomes in the periphery, including weight loss, gross indices of gut injury and systemic inflammation, the loss of tight junction proteins in the colonic epithelium, and markers of colonic inflammation, were unaffected with DSP-4 pre-administration. We then measured alterations in neuroimmune gene expression in the ventral midbrain in response to DSS treatment alone as well as the extent to which prior LC injury modified this response. In this two-hit model we observed that DSS-induced colitis activates the expression of key cytokines and chemokines in the ventral midbrain only in the presence of LC injury and the typical DSS-associated neuroimmune is blunted by pre-LC lesioning with DSP-4. In all, this study supports the growing appreciation for the LC as neuroprotective against inflammation-induced brain injury and draws attention to the potential for NEergic interventions to exert disease-modifying effects under conditions where peripheral inflammation may compromise ventral midbrain dopaminergic neurons and increase the risk for development of PD.

9.
Brain Behav Immun ; 117: 473-492, 2024 03.
Article in English | MEDLINE | ID: mdl-38341052

ABSTRACT

The gut and brain are increasingly linked in human disease, with neuropsychiatric conditions classically attributed to the brain showing an involvement of the intestine and inflammatory bowel diseases (IBDs) displaying an ever-expanding list of neurological comorbidities. To identify molecular systems that underpin this gut-brain connection and thus discover therapeutic targets, experimental models of gut dysfunction must be evaluated for brain effects. In the present study, we examine disturbances along the gut-brain axis in a widely used murine model of colitis, the dextran sodium sulfate (DSS) model, using high-throughput transcriptomics and an unbiased network analysis strategy coupled with standard biochemical outcome measures to achieve a comprehensive approach to identify key disease processes in both colon and brain. We examine the reproducibility of colitis induction with this model and its resulting genetic programs during different phases of disease, finding that DSS-induced colitis is largely reproducible with a few site-specific molecular features. We focus on the circulating immune system as the intermediary between the gut and brain, which exhibits an activation of pro-inflammatory innate immunity during colitis. Our unbiased transcriptomics analysis provides supporting evidence for immune activation in the brain during colitis, suggests that myelination may be a process vulnerable to increased intestinal permeability, and identifies a possible role for oxidative stress and brain oxygenation. Overall, we provide a comprehensive evaluation of multiple systems in a prevalent experimental model of intestinal permeability, which will inform future studies using this model and others, assist in the identification of druggable targets in the gut-brain axis, and contribute to our understanding of the concomitance of intestinal and neuropsychiatric dysfunction.


Subject(s)
Colitis , Gene Regulatory Networks , Humans , Animals , Mice , Disease Models, Animal , Reproducibility of Results , Brain , Colitis/chemically induced , Oxidative Stress
10.
bioRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38370694

ABSTRACT

Synucleinopathies are a group of central nervous system pathologies that are characterized by neuronal accumulation of misfolded and aggregated α-synuclein in proteinaceous depositions known as Lewy Bodies (LBs). The transition of α-synuclein from its physiological to pathological form has been associated with several post-translational modifications such as phosphorylation and an increasing degree of insolubility, which also correlate with disease progression in postmortem specimens from human patients. Neuronal expression of α-synuclein in model organisms, including Drosophila melanogaster, has been a typical approach employed to study its physiological effects. Biochemical analysis of α-synuclein solubility via high-speed ultracentrifugation with buffers of increasing detergent strength offers a potent method for identification of α-synuclein biochemical properties and the associated pathology stage. Unfortunately, the development of a robust and reproducible method for evaluation of human α-synuclein solubility isolated from Drosophila tissues has remained elusive. Here, we tested different detergents for their ability to solubilize human α-synuclein carrying the pathological mutation A53T from brains of aged flies. We also assessed the effect of sonication on solubility of human α-synuclein and optimized a protocol to discriminate relative amounts of soluble/insoluble human α-synuclein from dopaminergic neurons of the Drosophila brain. Our data established that, using a 5% SDS buffer, the 3-step protocol distinguishes between cytosolic soluble proteins in fraction 1, detergent-soluble proteins in fraction 2 and insoluble proteins in fraction 3. This protocol shows that sonication breaks down α-synuclein insoluble complexes from the fly brain, making them soluble in the SDS buffer and enriching fraction 2 of the protocol.

12.
J Neuroinflammation ; 20(1): 286, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38037070

ABSTRACT

BACKGROUND: Alterations in progranulin (PGRN) expression are associated with multiple neurodegenerative diseases (NDs), including frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD), and lysosomal storage disorders (LSDs). Recently, the loss of PGRN was shown to result in endo-lysosomal system dysfunction and an age-dependent increase in the expression of another protein associated with NDs, glycoprotein non-metastatic B (GPNMB). MAIN BODY: It is unclear what role GPNMB plays in the context of PGRN insufficiency and how they interact and contribute to the development or progression of NDs. This review focuses on the interplay between these two critical proteins within the context of endo-lysosomal health, immune function, and inflammation in their contribution to NDs. SHORT CONCLUSION: PGRN and GPNMB are interrelated proteins that regulate disease-relevant processes and may have value as therapeutic targets to delay disease progression or extend therapeutic windows.


Subject(s)
Frontotemporal Dementia , Neurodegenerative Diseases , Humans , Progranulins/metabolism , Neurodegenerative Diseases/metabolism , Glycoproteins/metabolism , Inflammation/metabolism , Lysosomes/metabolism , Membrane Glycoproteins/metabolism
13.
Mol Ther Nucleic Acids ; 34: 102064, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38028198

ABSTRACT

Genetic variation around the LRRK2 gene affects risk for both familial and sporadic Parkinson's disease (PD). LRRK2 levels have become an appealing target for potential PD therapeutics with LRRK2 antisense oligonucleotides (ASOs) now moving toward clinical trials. However, LRRK2 has been suggested to play a fundamental role in peripheral immunity, and it is currently unknown if targeting increased LRRK2 levels in peripheral immune cells will be beneficial or deleterious. Here it was observed that G2019S macrophages exhibited increased stimulation-dependent lysosomal tubule formation (LTF) and MHC-II trafficking from the perinuclear lysosome to the plasma membrane in an mTOR-dependent manner with concomitant increases in pro-inflammatory cytokine release. Both ASO-mediated knockdown of mutant Lrrk2 and LRRK2 kinase inhibition ameliorated this phenotype and decreased these immune responses in control cells. Given the critical role of antigen presentation, lysosomal function, and cytokine release in macrophages, it is likely LRRK2-targeting therapies with systemic activity may have therapeutic value with regard to mutant LRRK2, but deleterious effects on the peripheral immune system, such as altered pathogen control in these cells, should be considered when reducing levels of non-mutant LRRK2.

14.
Sci Transl Med ; 15(721): eadk3225, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37939158

ABSTRACT

Parkinson's disease (PD) is a multisystem disorder with characteristics of a chronic inflammatory disease. To develop effective immunomodulatory interventions to combat PD, we need to think innovatively about the implications of orchestrated central and peripheral innate and adaptive immune responses that occur as the disease begins and progresses.


Subject(s)
Parkinson Disease , Humans , Adaptive Immunity , Immunomodulation , Immunity, Innate
15.
Res Sq ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37886510

ABSTRACT

Inflammation is a realized detriment to brain health in a growing number of neurological diseases, but querying neuroinflammation in its cellular complexity remains a challenge. This manuscript aims to provide a reliable and accessible strategy for examining the brain's immune system. We compare the efficacy of cell isolation methods in producing ample and pure immune samples from mouse brains. Then, with the high-input single-cell genomics platform PIPseq, we generate a rich neuroimmune dataset containing microglia and many peripheral immune populations. To demonstrate this strategy's utility, we interrogate the well-established model of LPS-induced neuroinflammation with single-cell resolution. We demonstrate the activation of crosstalk between microglia and peripheral phagocytes and highlight the unique contributions of microglia and peripheral immune cells to neuroinflammation. Our approach enables the high-depth evaluation of inflammation in longstanding rodent models of neurological disease to reveal novel insight into the contributions of the immune system to brain health.

16.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37905053

ABSTRACT

Considering age is the greatest risk factor for many neurodegenerative diseases, aging, in particular aging of the immune system, is the most underappreciated and understudied contributing factor in the neurodegeneration field. Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) protein has been implicated in peripheral immune signaling, however, the effects of an aging immune system on LRRK2 function have been neglected to be considered. We demonstrate here that the R1441C mutation induces a hyper-responsive phenotype in macrophages from young female mice, characterized by increased effector functions, including stimulation-dependent antigen presentation, cytokine release, phagocytosis, and lysosomal function. This is followed by age-acquired immune cell exhaustion in a Lrrk2-kinase-dependent manner. Immune-exhausted macrophages exhibit suppressed antigen presentation and hypophagocytosis, which is also demonstrated in myeloid cells from R1441C and Y1699C-PD patients. Our novel findings that LRRK2 mutations confer immunological advantage at a young age but may predispose the carrier to age-acquired immune exhaustion have significant implications for LRRK2 biology and therapeutic development. Indeed, LRRK2 has become an appealing target in PD, but our findings suggest that more research is required to understand the cell-type specific consequences and optimal timing of LRRK2-targeting therapeutics.

17.
bioRxiv ; 2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37609290

ABSTRACT

The gut and brain are increasingly linked in human disease, with neuropsychiatric conditions classically attributed to the brain showing an involvement of the intestine and inflammatory bowel diseases (IBDs) displaying an ever-expanding list of neurological comorbidities. To identify molecular systems that underpin this gut-brain connection and thus discover therapeutic targets, experimental models of gut dysfunction must be evaluated for brain effects. In the present study, we examine disturbances along the gut-brain axis in a widely used murine model of colitis, the dextran sodium sulfate (DSS) model, using high-throughput transcriptomics and an unbiased network analysis strategy coupled with standard biochemical outcome measures to achieve a comprehensive approach to identify key disease processes in both colon and brain. We examine the reproducibility of colitis induction with this model and its resulting genetic programs during different phases of disease, finding that DSS-induced colitis is largely reproducible with a few site-specific molecular features. We focus on the circulating immune system as the intermediary between the gut and brain, which exhibits an activation of pro-inflammatory innate immunity during colitis. Our unbiased transcriptomics analysis provides supporting evidence for immune activation in the brain during colitis, suggests that myelination may be a process vulnerable to increased intestinal permeability, and identifies a possible role for oxidative stress and brain oxygenation. Overall, we provide a comprehensive evaluation of multiple systems in a prevalent experimental model of intestinal permeability, which will inform future studies using this model and others, assist in the identification of druggable targets in the gut-brain axis, and contribute to our understanding of the concomitance of intestinal and neuropsychiatric dysfunction.

18.
PLoS One ; 18(8): e0277718, 2023.
Article in English | MEDLINE | ID: mdl-37607205

ABSTRACT

Riluzole is the only treatment known to improve survival in patients with Amyotrophic Lateral Sclerosis (ALS). However, oral riluzole efficacy is modest at best, further it is known to have large inter-individual variability of serum concentration and clearance, is formulated as an oral drug in a patient population plagued with dysphagia, and has known systemic side-effects like asthenia (limiting patient compliance) and elevated liver enzymes. In this context, we postulated that continuous intrathecal (IT) infusion of low doses of riluzole could provide consistent elevations of the drug spinal cord (SC) concentrations at or above those achieved with oral dosing, without increasing the risk for adverse events associated with systemic drug exposure or off-target side effects in the brain. We developed a formulation of riluzole for IT delivery and conducted our studies in purpose-bred hound dogs. Our non-GLP studies revealed that IT infusion alone was able to increase SC concentrations above those provided by oral administration, without increasing plasma concentrations. We then conducted two GLP studies that combined IT infusion with oral administration at human equivalent dose, to evaluate SC and brain concentrations of riluzole along with assessments of safety and tolerability. In the 6-week study, the highest IT dose (0.2 mg/hr) was well tolerated by the animals and increased SC concentrations above those achieved with oral riluzole alone, without increasing brain concentrations. In the 6-month study, the highest dose tested (0.4 mg/hr) was not tolerated and yielded SC significantly above those achieved in all previous studies. Our data show the feasibility and safety profile of continuous IT riluzole delivery to the spinal cord, without concurrent elevated liver enzymes, and minimal brain concentrations creating another potential therapeutic route of delivery to be used in isolation or in combination with other therapeutics."


Subject(s)
Amyotrophic Lateral Sclerosis , Drug-Related Side Effects and Adverse Reactions , Humans , Animals , Dogs , Amyotrophic Lateral Sclerosis/drug therapy , Riluzole/therapeutic use , Brain , Administration, Oral
19.
bioRxiv ; 2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37503267

ABSTRACT

Mutations in the progranulin (PGRN) encoding gene, GRN, cause familial frontotemporal dementia (FTD) and neuronal ceroid lipofuscinosis (NCL) and PGRN is also implicated in Parkinson's disease (PD). These mutations result in decreased PGRN expression. PGRN is highly expressed in peripheral immune cells and microglia and regulates cell growth, survival, repair, and inflammation. When PGRN is lost, the lysosome becomes dysfunctional, but the exact mechanism by which PGRN plays a role in lysosome function and how this contributes to inflammation and degeneration is not entirely understood. To better understand the role of PGRN in regulating lysosome function, this study examined how loss of GRN impacts total LAMP1 protein expression and cathepsin activities. Using mouse embryonic fibroblasts (MEFs), immunocytochemistry and immunoblotting assays were performed to analyze fluorescent signal from LAMP1 (lysosomal marker) and BMV109 (marker for pan-cathepsin activity). GRN-/- MEFs exhibit increased expression of pan-cathepsin activity relative to GRN+/+ MEFs, and significantly impacts expression of LAMP1. The significant increase in pan-cathepsin activity in the GRN-/- MEFs confirms that PGRN loss does alter cathepsin expression, which may be a result of compensatory mechanisms happening within the cell. Using NTAP PGRN added to GRN-/- MEFs, specific cathepsin activity is rescued. Further investigations should include assessing LAMP1 and BMV109 expression in microglia from GRN-/- mice, in the hopes of understanding the role of PGRN in lysosomal function in immune cells of the central nervous system and the diseases in which it is implicated.

20.
bioRxiv ; 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37503274

ABSTRACT

Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). LRRK2 levels have become an appealing target for potential PD-therapeutics with LRRK2 antisense oligonucleotides (ASOs) now in clinical trials. However, LRRK2 has been suggested to play a fundamental role in peripheral immunity, and it is currently unknown if targeting increased LRRK2 levels in peripheral immune cells will be beneficial or deleterious. Furthermore, the precise role of LRRK2 in immune cells is currently unknown, although it has been suggested that LRRK2-mediated lysosomal function may be crucial to immune responses. Here, it was observed that G2019S macrophages exhibited increased stimulation-dependent lysosomal tubule formation (LTF) and MHC-II trafficking from the perinuclear lysosome to the plasma membrane in an mTOR dependent manner with concomitant increases in pro-inflammatory cytokine release. Both ASO-mediated knock down of mutant Lrrk 2 and LRRK2 kinase inhibition ameliorated this phenotype and decreased these immune responses in control cells. Given the critical role of antigen presentation, lysosomal function, and cytokine release in macrophages, it is likely LRRK2-targetting therapies may have therapeutic value with regards to mutant LRRK2 but deleterious effects on the peripheral immune system, such as altered pathogen control and infection resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...