Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 17(28): 18413-25, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26106869

ABSTRACT

The structure and electronic properties of carbon atom chains Cn in contact with Ag electrodes are investigated in detail with first principles means. The ideal Ag(100) surface is used as a model for binding, and electron transport through the chains is studied as a function of their length, applied bias voltage, presence of capping atoms (Si, S) and adsorption site. It is found that the metal-molecule bond largely influences electronic coupling to the leads. Without capping atoms the quality of the electric contact improves when increasing the carbon atom coordination number to the metal (1, 2 and 4 for adsorption on a top, bridge and hollow position, respectively) and this finding translates almost unchanged in more realistic tip-like contacts which present one, two or four metal atoms at the contact. Current-voltage characteristics show Ohmic behaviour over a wide range of bias voltages and the resulting conductances change only weakly when increasing the wire length. The effect of a capping species is typically drastic, and either largely reduces (S) or largely increases (Si) the coupling of the wire to the electrodes. Comparison of our findings with recent experimental results highlights the limits of the adopted approach, which can be traced back to the known gap problem of density-functional-theory.

2.
Phys Chem Chem Phys ; 16(33): 17610-6, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25025888

ABSTRACT

The electronic and transport properties of graphene ribbons sandwiched between hydrogen dimer lines, of the kind recently realized by Nilsson et al., Carbon, 2012, 50, 2052, are investigated with the help of first principles methods. It is found that such lines of hydrogen atoms block conduction between neighboring channels and effectively allow the confinement of graphene charge carriers, thereby opening the possibility of imprinting nano-circuits in graphene by controlled hydrogenation.

3.
J Phys Chem A ; 118(33): 6595-603, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24972261

ABSTRACT

The low-energy electronic states of the CH2(+) molecular ion are investigated with multireference configuration interaction calculations based on complete active space self-consistent field reference wave functions using a large C(6s5p4d3f)/H(8s6p3d1f) basis set. The focus is on the three lowest-lying states describing formation and destruction of the astrophysically relevant methylidine cation CH(+). Both processes are discussed in light of the topology of the relevant potential energy surfaces and their intersections.

4.
Proc Natl Acad Sci U S A ; 110(17): 6674-7, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23572584

ABSTRACT

Hydrogen formation is a key process for the physics and the chemistry of interstellar clouds. Molecular hydrogen is believed to form on the carbonaceous surface of dust grains, and several mechanisms have been invoked to explain its abundance in different regions of space, from cold interstellar clouds to warm photon-dominated regions. Here, we investigate direct (Eley-Rideal) recombination including lattice dynamics, surface corrugation, and competing H-dimers formation by means of ab initio molecular dynamics. We find that Eley-Rideal reaction dominates at energies relevant for the interstellar medium and alone may explain observations if the possibility of facile sticking at special sites (edges, point defects, etc.) on the surface of the dust grains is taken into account.


Subject(s)
Cosmic Dust/analysis , Extraterrestrial Environment/chemistry , Hydrogen/chemistry , Models, Chemical , Molecular Dynamics Simulation , Dimerization
5.
J Chem Phys ; 135(21): 214108, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-22149780

ABSTRACT

Semiclassical methods face numerical challenges as the dimensionality of the system increases. In the general context of the theory of differential equations, this is known as the "curse of dimensionality." In the present manuscript, we apply the recently-introduced multi-coherent states semiclassical initial value representation (MC-SC-IVR) approach to extend the applicability of first-principles semiclassical calculations. The proposed strategy involves the use of non-local coherent states with the goal of increasing accuracy in the Fourier transforms, and on the other hand, allows for the selection of peaks of different frequencies. The ability to filter desired peaks is important for analyzing the power spectra of complex systems. The MC-SC-IVR approach allows us to solve a 19-dimensional test system and to resolve on-the-fly the power spectra of the formaldehyde molecule with very few classical trajectories.

6.
J Chem Phys ; 134(23): 234103, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21837839

ABSTRACT

Vibrational eigenfunctions are calculated on-the-fly using semiclassical methods in conjunction with ab initio density functional theory classical trajectories. Various semiclassical approximations based on the time-dependent representation of the eigenfunctions are tested on an analytical potential describing the chemisorption of CO on Cu(100). Then, first principles semiclassical vibrational eigenfunctions are calculated for the CO(2) molecule and its accuracy evaluated. The multiple coherent states initial value representations semiclassical method recently developed by us has shown with only six ab initio trajectories to evaluate eigenvalues and eigenfunctions at the accuracy level of thousands trajectory semiclassical initial value representation simulations.

7.
Phys Chem Chem Phys ; 13(37): 16680-8, 2011 Oct 06.
Article in English | MEDLINE | ID: mdl-21858337

ABSTRACT

The exothermic, collinearly-dominated Eley-Rideal hydrogen formation on graphite is studied with electronic structure and quantum dynamical means. In particular, the focus is on the importance of the model used to describe the graphitic substrate, in light of the marked discrepancies present in available literature results. To this end, the collinear reaction is considered and the potential energy surface is computed for a number of different graphitic surface models using Density Functional Theory (DFT) for different dynamical regimes. Quantum dynamics is performed with wavepacket techniques down to the cold collision energies relevant for the chemistry of the interstellar medium. Results show that the reactivity at moderate-to-high collision energies sensitively depends on the shape of the PES in the entrance channel, which in turn is related to the adopted surface model. At low energies we rule out the presence of any barrier to reaction, thereby highlighting the importance of quantum reflection in limiting the reaction efficiency.

8.
J Chem Phys ; 133(5): 054701, 2010 Aug 07.
Article in English | MEDLINE | ID: mdl-20707543

ABSTRACT

Lateral interactions between carbon monoxide molecules adsorbed on a copper Cu(100) surface are investigated via semiclassical initial value representation (SC-IVR) molecular dynamics. A previous analytical potential is extended to include long-range dipole interactions between coadsorbed molecules and preliminary classical simulations were performed to tune the potential parameters. Then, the spectra for several coadsorbed molecules are calculated using the multiple coherent states approximation of the time-averaging representation of the SC-IVR propagator. Results show strong resonances between coadsorbed molecules as observed by past experiments. Resonances turn into dephasing when isotopical substitutions are performed.

9.
J Chem Phys ; 130(23): 234113, 2009 Jun 21.
Article in English | MEDLINE | ID: mdl-19548717

ABSTRACT

A multiple coherent states implementation of the semiclassical approximation is introduced and employed to obtain the power spectra with a few classical trajectories. The method is integrated with the time-averaging semiclassical initial value representation to successfully reproduce anharmonicity and Fermi resonance splittings at a level of accuracy comparable to semiclassical simulations of thousands of trajectories. The method is tested on two different model systems with analytical potentials and implemented in conjunction with the first-principles molecular dynamics scheme to obtain the power spectrum for the carbon dioxide molecule.

10.
J Phys Chem A ; 113(52): 14545-53, 2009 Dec 31.
Article in English | MEDLINE | ID: mdl-19518057

ABSTRACT

Eley-Rideal formation of hydrogen molecules on graphite, as well as competing collision induced processes, are investigated quantum dynamically at typical interstellar cloud conditions, focusing in particular on gas-phase temperatures below 100 K, where much of the chemistry of the so-called diffuse clouds takes place on the surface of bare carbonaceous dust grains. Collisions of gas-phase hydrogen atoms with both chemisorbed and physisorbed species are considered using available potential energy surfaces (Sha et al., J. Chem. Phys.2002 116, 7158), and state-to-state, energy-resolved cross sections are computed for a number of initial vibrational states of the hydrogen atoms bound to the surface. Results show that (i) product molecules are internally hot in both cases, with vibrational distributions sharply peaked around few (one or two) vibrational levels, and (ii) cross sections for chemisorbed species are 2-3x smaller than those for physisorbed ones. In particular, we find that H(2) formation cross sections out of chemically bound species decrease steadily when the temperature drops below approximately 1000 K, and this is likely due to a quantum reflection phenomenon. This suggests that such Eley-Rideal reaction is all but efficient in the relevant gas-phase temperature range, even when gas-phase H atoms happen to chemisorb barrierless to the surface as observed, e.g., for forming so-called para dimers. Comparison with results from classical trajectory calculations highlights the need of a quantum description of the dynamics in the astrophysically relevant energy range, whereas preliminary results of an extensive first-principles investigation of the reaction energetics reveal the importance of the adopted substrate model.

11.
Phys Chem Chem Phys ; 11(20): 3861-7, 2009 May 28.
Article in English | MEDLINE | ID: mdl-19440613

ABSTRACT

In this work, we explore the use of the semiclassical initial value representation (SC-IVR) method with first-principles electronic structure approaches to carry out classical molecular dynamics. The proposed approach can extract the vibrational power spectrum of carbon dioxide from a single trajectory providing numerical results that agree with experiment and quantum calculations. The computational demands of the method are comparable to those of classical single-trajectory calculations, while describing uniquely quantum features such as the zero-point energy and Fermi resonances. The method can also be used to identify symmetry properties of given vibrational peaks and investigate vibrational couplings by selected classical trajectories. The accuracy of the method degrades for the reproduction of anharmonic shifts for high-energy vibrational levels.

12.
J Chem Phys ; 130(5): 054704, 2009 Feb 07.
Article in English | MEDLINE | ID: mdl-19206986

ABSTRACT

Adsorption of hydrogen atoms on a single graphite sheet (graphene) has been investigated by first-principles electronic structure means, employing plane-wave based periodic density functional theory. A 5 x 5 surface unit cell has been adopted to study single and multiple adsorptions of H atoms. Binding and barrier energies for sequential sticking have been computed for a number of configurations involving adsorption on top of carbon atoms. We find that binding energies per atom range from approximately 0.8 to approximately 1.9 eV, with barriers to sticking in the range 0.0-0.15 eV. In addition, depending on the number and location of adsorbed hydrogen atoms, we find that magnetic structures may form in which spin density localizes on a square root(3) x square root(3)R30 degrees sublattice and that binding (barrier) energies for sequential adsorption increase (decrease) linearly with the site-integrated magnetization. These results can be rationalized with the help of the valence-bond resonance theory of planar pi conjugated systems and suggest that preferential sticking due to barrierless adsorption is limited to formation of hydrogen pairs.

13.
Phys Chem Chem Phys ; 10(36): 5545-51, 2008 Sep 28.
Article in English | MEDLINE | ID: mdl-18956089

ABSTRACT

Quasi-classical trajectory calculations have been performed on the adiabatically allowed reactions taking place on the two lowest-lying electronic states of the LiH2+ system, using the ab initio potential energy surfaces of Martinazzo et al. (J. Chem. Phys., 2003, 119, 11 241). These reactions comprise: (i) the exoergic H2 and H2+ formation occurring through LiH+ + H and LiH + H+ collisions in the ground and in the first electronically excited state, respectively; (ii) the endoergic (ground state) LiH+ dissociation induced by collisions with H atoms; and (iii) the endoergic (excited state) Li + H2+ --> LiH + H+ reaction. The topic is of relevance for a better understanding of the lithium chemistry in the early universe. Thermal rate constants for the above reactions have been computed in the temperature range 10-5000 K and found in reasonably good agreement with estimates based on the capture model.


Subject(s)
Computer Simulation , Hydrogen/chemistry , Lithium/chemistry , Models, Chemical , Quantum Theory , Electrons , Kinetics , Temperature
14.
J Chem Phys ; 125(19): 194102, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17129084

ABSTRACT

A novel quantum method to deal with typical system-bath dynamical problems is introduced. Subsystem discrete variable representation and bath coherent-state sets are used to write down a multiconfigurational expansion of the wave function of the whole system. With the help of the Dirac-Frenkel variational principle, simple equations of motion--a kind of Schrodinger-Langevin equation for the subsystem coupled to (pseudo) classical equations for the bath--are derived. True dissipative dynamics at all times is obtained by coupling the bath to a secondary, classical Ohmic bath, which is modeled by adding a friction coefficient in the derived pseudoclassical bath equations. The resulting equations are then solved for a number of model problems, ranging from tunneling to vibrational relaxation dynamics. Comparison of the results with those of exact, multiconfiguration time-dependent Hartree calculations in systems with up to 80 bath oscillators shows that the proposed method can be very accurate and might be of help in studying realistic problems with very large baths. To this end, its linear scaling behavior with respect to the number of bath degrees of freedom is shown in practice with model calculations using tens of thousands of bath oscillators.

15.
J Chem Phys ; 124(12): 124702, 2006 Mar 28.
Article in English | MEDLINE | ID: mdl-16599713

ABSTRACT

Collision induced (CI) processes involving hydrogen atoms on a graphite surface are studied quantum mechanically within the rigid, flat surface approximation, using a time-dependent wave packet method. The Eley-Rideal (ER) reaction and collision induced desorption (CID) cross sections are obtained with the help of two propagations which use different sets of coordinates, a "product" and a "reagent" set. Several adsorbate-substrate initial states of the target H atom in the chemisorption well are considered, and CI processes are studied over a wide range of projectile energy. Results show that (i) the Eley-Rideal reaction is the major reactive outcome and (ii) CID cross sections do not exceed 4 A2 and present dynamic thresholds for low values of the target vibrational quantum number. ER cross sections show oscillations at high energies which cannot be reproduced by classical and quasiclassical trajectory calculations. They are related to the vibrational excitation of the reaction products, which is a rather steep decreasing function of the collision energy. This behavior causes a selective population of the low-lying vibrational states and allows the quantization of the product molecular states to manifest itself in a collisional observable. A peak structure in the CID cross section is also observed and is assigned to the selective population of metastable states of the transient molecular hydrogen.

16.
J Chem Phys ; 124(12): 124703, 2006 Mar 28.
Article in English | MEDLINE | ID: mdl-16599714

ABSTRACT

Following previous investigation of collision induced (CI) processes involving hydrogen atoms chemisorbed on graphite [R. Martinazzo and G. F. Tantardini, J. Chem. Phys. 124, 124702 (2006)], the case in which the target hydrogen atom is initially physisorbed on the surface is considered here. Several adsorbate-substrate initial states of the target H atom in the physisorption well are considered, and CI processes are studied for projectile energies up to 1 eV. Results show that (i) Eley-Rideal cross sections at low collision energies may be larger than those found in the H-chemisorbed case but they rapidly decrease as the collision energy increases; (ii) product hydrogen molecules are vibrationally very excited; (iii) collision induced desorption cross sections rapidly increase, reaching saturation values greater than 10 A2; (iv) trapping of the incident atoms is found to be as efficient as the Eley-Rideal reaction at low energies and remains sizable (3-4 A2) at high energies. The latter adsorbate-induced trapping results mainly in formation of metastable hot hydrogen atoms, i.e., atoms with an excess energy channeled in the motion parallel to the surface. These atoms might contribute in explaining hydrogen formation on graphite.

17.
J Chem Phys ; 122(9): 094109, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15836114

ABSTRACT

A time-dependent wave packet method is used to compute cross sections for radiative recombination reactions using the Li((2)S)+H(+)-->LiH(+)(X (2)Sigma(+))+gamma as a test case. Cross sections are calculated through standard time-to-energy mapping of the time-dependent transition moment and a useful method is introduced to deal with the low collision energy regime. Results are in quantitative agreement over the whole energy range 10(-4)-5 eV with previous time-independent results for the same system [I. Baccarelli, L. Andric, T. Grozdanov, and R. McCarroll, J. Chem. Phys. 117, 3013 (2002)], thereby suggesting that the method can be of help in computing radiative association cross sections for more complicated systems.

18.
J Phys Chem A ; 109(42): 9379-83, 2005 Oct 27.
Article in English | MEDLINE | ID: mdl-16866384

ABSTRACT

The exoergic Eley-Rideal hydrogen recombination on graphite surfaces is known to produce vibrationally hot product molecules. Realistic quantum scattering calculations at normal incidence over a wide range of collision energies show that the degree of vibrational excitation of the reaction product is a steep decreasing function of the collision energy. This results in selective population of the lower-lying vibrational levels and gives rise to an oscillating structure in the total reaction cross-sections at high energies, which cannot be reproduced by classical and quasi-classical trajectory calculations. An analogous quantum structure appears in the total collision-induced desorption cross-sections and is assigned to selective population of the metastable states of the transient molecular hydrogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...