Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 13(3)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38535601

ABSTRACT

A Rift Valley fever (RVF) outbreak occurred in at least five regions of Madagascar in 2021. The aim of this study was to provide an overview of the richness, abundance, ecology, and trophic preferences of mosquitoes in the Mananjary district and to investigate the distribution of mosquitoes that were RT-PCR-positive for RVFV. Three localities were prospected from 26 April to 4 May 2021, using light traps, BG-Sentinel traps baited with an artificial human odor, Muirhead-Thomson pit traps, and indoor pyrethroid spray catches. A total of 2806 mosquitoes belonging to at least 26 species were collected. Of 512 monospecific pools of mosquitoes tested with real-time RT-PCR, RVFV was detected in 37 pools representing 10 mosquito species. The RVFV-positive species were as follows: Aedes albopictus, Ae. argenteopunctatus, Anopheles coustani, An. gambiae s.l., An. mascarensis, An. squamosus/cydippis, Culex antennatus, Cx. decens, Cx. Tritaeniorhynchus, and Uranotaenia spp. Of the 450 tested engorged females, 78.7% had taken a blood meal on humans, 92.9% on cattle, and 71.6% had taken mixed (human-cattle) blood meals. This investigation suggests the potential role of mosquitoes in RVFV transmission within this epizootic/epidemic context and that the human populations at the three study sites were highly exposed to mosquitoes. Therefore, the use of impregnated mosquito nets as an appropriate prevention method is recommended.

2.
Sci Rep ; 13(1): 20830, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012255

ABSTRACT

The mosquito Anopheles gambiae s.s. is a primary malaria vector throughout sub-Saharan Africa including the islands of the Comoros archipelago (Anjouan, Grande Comore, Mayotte and Mohéli). These islands are located at the northern end of the Mozambique Channel in eastern Africa. Previous studies have shown a relatively high degree of genetic isolation between the Comoros islands and mainland populations of A. gambiae, but the origin of the island populations remains unclear. Here, we analyzed phylogenetic relationships among island and mainland populations using complete mitochondrial genome sequences of individual A. gambiae specimens. This work augments earlier studies based on analysis of the nuclear genome. We investigated the source population of A. gambiae for each island, estimated the number of introductions, when they occurred and explored evidence for contemporary gene flow between island and mainland populations. These studies are relevant to understanding historical patterns in the dispersal of this important malaria vector and provide information critical to assessing their potential for the exploration of genetic-based vector control methods to eliminate this disease. Phylogenetic analysis and haplotype networks were constructed from mitogenome sequences of 258 A. gambiae from the four islands. In addition, 112 individuals from seven countries across sub-Saharan Africa and Madagascar were included to identify potential source populations. Our results suggest that introduction events of A. gambiae into the Comoros archipelago were rare and recent events and support earlier claims that gene flow between the mainland and these islands is limited. This study is concordant with earlier work suggesting the suitability of these oceanic islands as appropriate sites for conducting field trial releases of genetically engineered mosquitoes (GEMs).


Subject(s)
Anopheles , Malaria , Humans , Animals , Anopheles/genetics , Phylogeny , Indian Ocean , Mosquito Vectors/genetics , Malaria/genetics , Malaria/prevention & control
3.
Parasitol Res ; 119(4): 1177-1199, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32246259

ABSTRACT

A few data are related to the anthropophily of Malagasy Phlebotomine sandflies. Prior studies focussed mainly to inventories and description of new species. Our goal was to emphasize the anthropophily of Malagasy Phlebotomine sandflies. We worked in the Makira region, using two simultaneous methods: human landing catches (HLC) and CDC light traps. We collected sandflies in three rural communities adjacent to the Makira Natural Park. In each community, three different biotopes were sampled: within community settlements; at the edge of forest, typically in agricultural land; and within the forest. We collected 61 sandflies belonging to two new species presently described: Phlebotomus artemievi sp. nov. and Sergentomyia maroantsetraensis sp. nov. These sandflies were caught exclusively in the forest edge biotope. None were captured within communities or within forests. HLC provided 97% of the collected sandflies, corresponding to a human-biting rate of 15 females per human per night. CDC provided only two females. Ph. artemievi sp. nov. was predominantly captured by HLC and appears to be highly anthropophilic. Here, we update the behavioural ecology of sandflies and describe two new species. Further research is required to understand their vector competence and their ability to transmit arboviruses and other pathogens such as Leishmania.


Subject(s)
Forests , Phlebotomus , Psychodidae , Animals , Disease Vectors , Ecosystem , Female , Madagascar , Male , Phlebotomus/classification , Psychodidae/classification
4.
Parasite ; 24: 3, 2017.
Article in English | MEDLINE | ID: mdl-28134093

ABSTRACT

Human and animal serological surveys suggest that West Nile virus (WNV) circulation is widely distributed in Madagascar. However, there are no reported West Nile fever outbreaks or epizootics in the country and only one fatal human case has been reported to date. Currently there is very limited information on the maintenance and the transmission of WNV in Madagascar and particularly on the mosquito species involved in transmission cycles. In 2014, we initiated a study to investigate mosquito species composition, relative abundance, and trophic behavior in Mitsinjo District close to Lake Kinkony, a WNV endemic area in north-western Madagascar. We collected a total of 2519 adult mosquitoes belonging to 21 different species. The most abundant species was Aedeomyia (Aedeomyia) madagascarica Brunhes, Boussès & da Cunha Ramos, which made up 83% of all the mosquitoes collected. Mosquito abundance was associated with proximity to the lake (Morafeno and Ankelimitondrotra). Additionally, a correlation was observed between the lake-side biotope and the abundance of mosquito vectors in Morafeno. WNV RNA was detected in one pool of Ae. madagascarica and one pool of Anopheles (Cellia) pauliani Grjebine, suggesting that these two species may be involved in the maintenance and/or transmission of WNV in Madagascar.


Subject(s)
Bird Diseases/virology , Mosquito Vectors/physiology , West Nile Fever/epidemiology , Animal Migration , Animals , Animals, Domestic , Antibodies, Viral/blood , Bird Diseases/epidemiology , Bird Diseases/transmission , Birds , Cattle , Chickens , Dogs , Endemic Diseases , Feeding Behavior , Female , Lakes , Madagascar , Mosquito Vectors/classification , Mosquito Vectors/growth & development , Mosquito Vectors/virology , Population Dynamics , Rats , Seroepidemiologic Studies , Sheep , Swine , West Nile Fever/transmission , West Nile virus/immunology
5.
PLoS Negl Trop Dis ; 8(12): e3346, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25474116

ABSTRACT

Rift Valley fever (RVF) is a vector-borne zoonotic disease that causes high morbidity and mortality in ruminants. In 2008-2009, a RVF outbreak affected the whole Madagascar island, including the Anjozorobe district located in Madagascar highlands. An entomological survey showed the absence of Aedes among the potential RVF virus (RVFV) vector species identified in this area, and an overall low abundance of mosquitoes due to unfavorable climatic conditions during winter. No serological nor virological sign of infection was observed in wild terrestrial mammals of the area, suggesting an absence of wild RVF virus (RVFV) reservoir. However, a three years serological and virological follow-up in cattle showed a recurrent RVFV circulation. The objective of this study was to understand the key determinants of this unexpected recurrent transmission. To achieve this goal, a spatial deterministic discrete-time metapopulation model combined with cattle trade network was designed and parameterized to reproduce the local conditions using observational data collected in the area. Three scenarios that could explain the RVFV recurrent circulation in the area were analyzed: (i) RVFV overwintering thanks to a direct transmission between cattle when viraemic cows calve, vectors being absent during the winter, (ii) a low level vector-based circulation during winter thanks to a residual vector population, without direct transmission between cattle, (iii) combination of both above mentioned mechanisms. Multi-model inference methods resulted in a model incorporating both a low level RVFV winter vector-borne transmission and a direct transmission between animals when viraemic cows calve. Predictions satisfactorily reproduced field observations, 84% of cattle infections being attributed to vector-borne transmission, and 16% to direct transmission. These results appeared robust according to the sensitivity analysis. Interweaving between agricultural works in rice fields, seasonality of vector proliferation, and cattle exchange practices could be a key element for understanding RVFV circulation in this area of Madagascar highlands.


Subject(s)
Cattle/virology , Rift Valley Fever/transmission , Animals , Culicidae/virology , Disease Outbreaks , Female , Humans , Madagascar/epidemiology , Models, Theoretical , Viremia/transmission
6.
Vector Borne Zoonotic Dis ; 11(6): 753-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21028960

ABSTRACT

Following veterinary alerts of Rift Valley fever (RVF) in the districts of Fianarantsoa I and II in November 2008 and in the district of Ambalavao in April 2009, entomological and virological investigations were carried out to identify the mosquito species that could act as RVF virus (RVFV) vectors in the region. A total of 12,785 adult mosquitoes belonging to 5 genera and 21 species were collected. After identification, mosquitoes were pooled by species, sex, and female status (fed or unfed) and then stored at -80°C. Of 319 pools of unfed monospecific female mosquito tested by real-time RT-polymerase chain reaction, RVFV was detected in 1 pool of Anopheles coustani, 5 pools of An. squamosus, and 2 pools of Culex antennatus mosquitoes. The virus was isolated in mosquito cell lines from two of the five Real Time-RT-polymerase chain reaction (real time-RT-PCR) positive pools of An. squamosus mosquitoes. From the eight RVFV strains detected, partial S, M, and L genome segments sequences were obtained. The phylogenetic analysis of these sequences showed that the strains circulating in mosquitoes were genetically close to those that circulated in livestock and humans during RVF outbreaks in 2008 and 2009. This study, therefore, provides strong evidence that An. squamosus, An. coustani, and Cx. antennatus could play a role as vectors of the RVFV during the disease outbreaks in 2008-2009. Bioecological, genetic, and RVF transmission studies on these three mosquito species are needed to address this question and thus improve prevention and control of future RVF outbreaks in Madagascar, where these species are present.


Subject(s)
Anopheles/virology , Culex/virology , Rift Valley fever virus/genetics , Rift Valley fever virus/isolation & purification , Animals , Female , Humans , Madagascar , Male , Phylogeny , RNA, Viral/genetics , RNA, Viral/isolation & purification , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...