Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 111(12): 2064-2076, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37596906

ABSTRACT

Polypropylene (PP) surgical mesh had reasonable success in repair of hernia and treatment of stress urinary incontinence (SUI); however, their use for the repair of pelvic organ prolapse (POP) resulted in highly variable results with lifelong complications in some patients. One of several factors that could be associated with mesh-related POP complications is changes in the properties of the implanted surgical mesh due to oxidative degradation of PP in vivo. Currently, there are no standardized in vitro bench testing methods available for assessing the susceptibility to oxidative degradation and estimating long-term in vivo stability of surgical mesh. In this work, we adapted a previously reported automated reactive accelerated aging (aRAA) system, which uses elevated temperatures and high concentrations of hydrogen peroxide (H2 O2 ), for accelerated bench-top oxidative degradation testing of PP surgical mesh. Since H2 O2 is highly unstable at elevated temperatures and for prolonged periods, the aRAA system involves a feedback loop based on electrochemical detection methods to maintain consistent H2 O2 concentration in test solutions. Four PP mesh samples with varying mesh knit designs, filament diameter, weight, and % porosity, were selected for testing using aRAA up to 4 weeks and characterized using thermal analysis, Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and scanning electron microscopy (SEM). Additionally, the oxidation index (OI) values were calculated based on the FTIR-ATR spectra to estimate the oxidative degradation and oxidation reaction kinetics of PP surgical mesh. The OI values and surface damage in the form of surface flaking, peeling, and formation of transverse cracks increased with aRAA aging time. The aRAA test method introduced here could be used to standardize the assessment of long-term stability of surgical mesh and may also be adopted for accelerated oxidative degradation testing of other polymer-based medical devices.

2.
Int J Biol Macromol ; 189: 705-714, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34474051

ABSTRACT

Polysaccharides from the red seaweed Gracilaria fisheri possess many functions, which include antioxidant, antiviral, and antibacterial activities. However, detailed data on their immunomodulatory activities are scarce. Here, we isolated sulfated galactans (SG) from G. fisheri. We found that the predominant SG from G. fisheri, termed SG-1, had an estimated molecular mass of 100 kDa and activated murine J774A.1 macrophages via the dectin-1 signaling pathway. Furthermore, we observed enhancement of nitric oxide (NO) secretion, increased expression of inducible nitric oxide synthase (iNOS) mRNA, and increased mRNA levels of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukins IL-1ß and IL-6 by SG-1 in macrophages. Moreover, there was higher expression of intercellular adhesion molecule 1 (ICAM-1) and co-stimulatory molecules (B7-1 and B7-2) mRNA. Treatment with G. fisheri SG-1 at 50 µg/mL generally achieved or exceeded the pro-inflammatory activities of 100 ng/mL lipopolysaccharide. Our study demonstrates immune-stimulatory activities of G. fisheri SG that may be of value for immune-potentiating treatment in humans or livestock.


Subject(s)
Galactans/pharmacology , Gracilaria/chemistry , Immunologic Factors/pharmacology , Seaweed/chemistry , Sulfates/pharmacology , Animals , B7-2 Antigen/genetics , B7-2 Antigen/metabolism , Carbon-13 Magnetic Resonance Spectroscopy , Cell Line , Cytokines/genetics , Cytokines/metabolism , Galactans/isolation & purification , Intercellular Adhesion Molecule-1/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Macrophage Activation/drug effects , Mice , Models, Biological , Nitric Oxide/metabolism , Phagocytosis/drug effects , Proton Magnetic Resonance Spectroscopy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects
3.
Biomacromolecules ; 22(7): 2910-2920, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34085824

ABSTRACT

Antibiotic-resistant Gram-negative bacteria are emergent pathogens, causing millions of infections worldwide. While there are several classes of antibiotics that are effective against Gram-positive bacteria, the outer membrane (OM) of Gram-negative bacteria excludes high-molecular-weight hydrophobic antibiotics, making these species intrinsically resistant to several classes of antibiotics, including polyketides, aminocoumarins, and macrolides. The overuse of antibiotics such as ß-lactams has also promoted the spread of resistance genes throughout Gram-negative bacteria, including the production of extended spectrum ß-lactamases (ESBLs). The combination of innate and acquired resistance makes it extremely challenging to identify antibiotics that are effective against Gram-negative bacteria. In this study, we have demonstrated the synergistic effect of outer membrane-permeable cationic polyurethanes with rifampicin, a polyketide that would otherwise be excluded by the OM, on different strains of E. coli, including a clinically isolated uropathogenic multidrug-resistant (MDR) E. coli. Rifampicin combined with a low-dose treatment of a cationic polyurethane reduced the MIC in E. coli of rifampicin by up to 64-fold. The compositions of cationic polyurethanes were designed to have low hemolysis and low cell cytotoxicity while maintaining high antibacterial activity. Our results demonstrate the potential to rescue the large number of available OM-excluded antibiotics to target normally resistant Gram-negative bacteria via synergistic action with these cationic polyurethanes, acting as a novel antibiotic adjuvant class.


Subject(s)
Escherichia coli , Rifampin , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Microbial Sensitivity Tests , Polyurethanes , Rifampin/pharmacology
4.
Biomaterials ; 182: 44-57, 2018 11.
Article in English | MEDLINE | ID: mdl-30103171

ABSTRACT

The use of degradable materials is required to address current performance and functionality shortcomings from biologically-derived tissues and non-resorbable synthetic materials used for hernia mesh repair applications. Herein a series of degradable l-valine-co-l-phenylalanine poly(ester urea) (PEU) copolymers were investigated for soft-tissue repair. Poly[(1-VAL-8)0.7-co-(1-PHE-6)0.3] showed the highest uniaxial mechanical properties (332.5 ±â€¯3.5 MPa). Additionally, l-valine-co-l-phenylalanine poly(ester urea)s were blade coated on small intestine submucosa extracellular matrix (SIS-ECM) and found to enhance the burst test mechanical properties of SIS-ECM in composite films (force at break between 102.6 ±â€¯6.5-151.4 ±â€¯11.3 N). Free standing films of l-valine-co-l-phenylalanine PEUs were found to have superior extension at break when compared to SIS-ECM (averages between 1.2 and 1.9 cm and 1.2 cm respectively). Fibroblast (L-929) spreading, proliferation, and improved attachment over control were observed without toxicity in vitro, while a reduced inflammatory response at both 7 and 14 days post-implant was observed for poly[(1-VAL-8)⁠0.7-co-(1-PHE-6)⁠0.3] when compared to polypropylene in an in vivo rat hernia model. These results support the use of PEU copolymers as free-standing films or as composite materials in soft-tissue applications for hernia-repair.


Subject(s)
Absorbable Implants , Biocompatible Materials/chemistry , Herniorrhaphy/methods , Phenylalanine/analogs & derivatives , Polyesters/chemistry , Urea/analogs & derivatives , Valine/analogs & derivatives , Animals , Cell Line , Cell Survival , Elastic Modulus , Hernia/therapy , Materials Testing , Mice , Rats , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...