Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 145: 107254, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432152

ABSTRACT

Vanillic acid (VA) - a naturally occurring phenolic compound in plants - is not only used as a flavoring agent but also a prominent metabolite post tea consumption. VA and its associated compounds are believed to play a significant role in preventing diseases, underscoring the need for a systematic investigation. Herein, we report a 4-step synthesis employing the classical organic reactions, such as Willamson's alkylation, Fischer-Spier reaction, and Steglich esterification, complemented with a protection-deprotection strategy to prepare 46 VA derivatives across the five series (1a-1i, 2a-2i, 3, 3a-3i, 4a-4i, 5a-5i) in high yields. The synthesized compounds were investigated for their antifungal, anti-inflammatory, and toxic effects. Notably, compound 1a demonstrated remarkable ROS inhibition with an IC50 value of 5.1 ± 0.7 µg/mL, which is more than twice as effective as the standard ibuprofen drug. A subset of the synthesized derivatives (2b, 2c, 2e, 3b-3d, 4a-4c, 5a, and 5e) manifested their antifungal effect against drug-resistant Candida strains. Compound 5g, in particular, revealed synergism with the established antifungal drugs amphotericin B (AMB) and fluconazole (FLZ), doubling FLZ's potency against azole resistant Candida albican ATCC 36082. Furthermore, 5g improved the potency of these antifungals against FLZ-sensitive strains, including C. glabrata ATCC 2001 and C. parapsilosis ATCC 22019, as well as various multidrug-resistant (MDR) Candida strains, namely C. albicans ATCC 14053, C. albicans CL1, and C. krusei SH2L OM341600. Additionally, pharmacodynamics of compound 5g was examined using time-kill assay, and a benign safety profile was observed with no hemolytic activity in whole blood, and no cytotoxicity towards the normal BJ human cell line. The synergistic potential of 5g was further investigated through both experimental methods and docking simulations.These findings highlight the therapeutic potential of VA derivatives, particularly in addressing inflammation and circumventing FLZ resistance in Candida albicans.


Subject(s)
Antifungal Agents , Mycoses , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Vanillic Acid/pharmacology , Vanillic Acid/therapeutic use , Azoles/pharmacology , Microbial Sensitivity Tests , Mycoses/drug therapy , Fluconazole/pharmacology , Candida , Candida albicans , Candida glabrata , Inflammation/drug therapy
2.
Molecules ; 28(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36615406

ABSTRACT

The emergence of multidrug-resistant (MDR) pathogens and the gradual depletion of available antibiotics have exacerbated the need for novel antimicrobial agents with minimal toxicity. Herein, we report functionally substituted pyridine carbohydrazide with remarkable antimicrobial effect on multi-drug resistant strains. In the series, compound 6 had potent activity against four MDR strains of Candida spp., with minimum inhibitory concentration (MIC) values being in the range of 16-24 µg/mL and percentage inhibition up to 92.57%, which was exceptional when compared to broad-spectrum antifungal drug fluconazole (MIC = 20 µg/mL, 81.88% inhibition). Substitution of the octyl chain in 6 with a shorter butyl chain resulted in a significant anti-bacterial effect of 4 against Pseudomonas aeruginosa (ATCC 27853), the MIC value being 2-fold superior to the standard combination of ampicillin/cloxacillin. Time-kill kinetics assays were used to discern the efficacy and pharmacodynamics of the potent compounds. Further, hemolysis tests confirmed that both compounds had better safety profiles than the standard drugs. Besides, molecular docking simulations were used to further explore their mode of interaction with target proteins. Overall results suggest that these compounds have the potential to become promising antimicrobial drugs against MDR strains.


Subject(s)
Anti-Infective Agents , Antifungal Agents , Antifungal Agents/pharmacology , Molecular Docking Simulation , Drug Resistance, Multiple, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Pyridines/pharmacology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...